Structural control and genesis of the Oligocene Zhenyuan orogenic gold deposit, SW China

Jun Deng *, Qingfei Wang, Gongjian Li, Yan Zhao

State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China

A R T I C L E I N F O

Article history:
Received 16 December 2012
Received in revised form 13 August 2014
Accepted 13 August 2014
Available online 20 August 2014

Keywords:
Zhenyuan
Continental underthrust
Orogenic gold deposit
Ailaoshan

A B S T R A C T

The Zhenyuan gold deposit with > 50 t gold reserve is located within the Jinshajiang-Ailaoshan suture zone that formed through the closure of Paleo-Tethyan ocean in late-Permian. This suture separates the Simao and South China blocks. A west-dipping high velocity zone down to ca. 250 km beneath the Simao block in the seismic tomography suggests that the South China lithosphere was underthrust westward. The NNW-trending Ailaoshan–Red River shear zone is situated to the east of Ailaoshan suture. The shearing in this belt, generally following a regional mantle upwelling and crust extension event, was initiated at 32 Ma and culminated at ca. 27 Ma. This shearing was induced by the lateral extrusion and large clockwise rotation of the Simao block during the India–Eurasia continental collision and the underthrusting of South China block. The Zhenyuan ore deposit consists of the Dongguailin and Laowangzhai orebody clusters. The Dongguailin orebodies are controlled by the NW-striking shear faults, whereas most orebodies in the Laowangzhai are dominated by NE- and ENE-striking transcompresional faults. It is observed that the NE- and ENE-striking faults are crosscut by the NW-striking faults. It is deduced that the former were primarily formed as nearly NS-trending faults during the regional extension or initial shearing stage at ca. 32 Ma. The primary faults were then re-oriented to the current strike concomitant with the rotation of the Simao block, and further cut by the NW-striking shear faults, which are subsidiary to the Ailaoshan–Red River shear zone. The rock types in the ore deposit including slate, meta-sandstone, limestone, lamprophyre, and meta-mafic to ultramafic units, which were all mineralized by the infiltration of ore-bearing fluids into extensional fractures. The low temperature ore mineral assemblage (pyrite–stibnite–arsenopyrite), enriched element association, and ranges of S and Pb isotopic compositions in the two ore clusters are broadly similar, indicating that the mineralization is contemporary despite the different formation times of ore-controlling structures. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of hydrothermal pyrite are close to those of the lower crust. Pyrite δ34S values show a wide range with a peak near 0 per mil. The S and Pb isotopic compositions, together with previously published H–O–He–Ar isotopic data, suggest that the ore fluid is mainly metamorphic. The data also suggest the input of mantle volatiles, consistent with mantle upwelling. The control of the shear zones on mineralization favors the interpretation that the Ar–Ar isochron age ~27 Ma of phlogopite in the mineralized lamprophyre represents the mineralization age. This mineralization age implies that the South China block had started westward underthrusting before ~27 Ma. The Zhenyuan ore deposit is considered to be an orogenic type, formed in a transitional stage from mantle upwelling to continental underthrust. The continental underthrusting drove the release of gold-charged metamorphic fluids and formation of the Zhenyuan ore deposit.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Ailaoshan tectonic belt is an important tectonic–magmatic–metallogenic belt in the Sanjiang region, SW China. This belt comprises the Ailaoshan–Red River shear zone (ASRRSZ) in the east and the Ailaoshan suture in the west (Lai et al., 2014a,b; Wang et al., 2014; Zaw et al., 2014). The Ailaoshan suture was formed by the closure of one arm of the Paleo-Tethyan ocean in late-Permian (Deng et al., 2014a; Li et al., 2013b). The evolution of the belt in the Cenozoic was largely constrained by the India–Eurasia continental collision (Deng et al., 2010a,b, 2011; Hou and Cook, 2009; Lee and Lawver, 1995). It was proposed that the Ailaoshan belt experienced mantle upwelling and crust extension at ~35 Ma and followed by the intensive compressional shearing along the ASRRSZ (Leloup et al., 1995; Liu et al., 2012; Lu et al., 2012; Wang et al., 2001b). Along the belt, several hydrothermal gold deposits controlled by subsidiary shear zones, e.g. the Zhenyuan and Daping, occur to the west of the ASRRSZ (Hu et al., 1998; Yang et al., 2011). The Zhenyuan ore deposit containing more than 50 t Au is the largest shear zone-controlled gold deposit in the Sanjiang region.
The geological setting (Bi et al., 1996), auriferous fluids (Burnard et al., 1999; Liang et al., 2011; Zhao et al., 2013a), and metallogenic time (Wang et al., 2001a) of the ore deposit have been previously studied. However the detailed ore-controlling structures, genetic type and tectonic background remain ambiguous. In this paper, these issues are further taken up in combination with the previously published isotopic data.

2. Geological settings

2.1. Regional geology

SW China comprises several major tectonic blocks, i.e., the Sibumasu, Eastern Qiangtang, Western Qiangtang, Simao (the northern part of Indochina block), and South China blocks (Fig. 1). These blocks were amalgamated due to the closures of Tethyan oceans. The Jinshajiang suture developed in the northern Sanjiang and Ailaoshan suture in the southern Sanjiang were formed by closures of Paleo-Tethys oceanic arms (Deng et al., 2014a). In Cenozoic, the India–Eurasia continental collision caused the lateral extrusion of the Indochina block and the formation of several shear zones (Socquet and Pubellier, 2005).

The ASRRSZ is bordered by the east-dipping Ailaoshan and Red River faults, and it stretches over 100 km in length and about 1 to 3 km wide, striking N20°–30°W and dipping N60°–80°E (Hou et al., 2007) (Fig. 2). Between the Red River fault and the Ailaoshan fault is the Proterozoic Ailaoshan Group, which consists of high-grade metamorphic rocks (Burnard et al., 1999; Xiong et al., 2007) (Fig. 2). The left-lateral shearing along the ASRRSZ initiated at 31 Ma and culminated at ~27 Ma according to the zircon U–Pb ages of leucogranite dikes (Cao et al., 2011).

A belt with low-grade metamorphic rocks is developed west of the Ailaoshan fault. This unit comprises the Paleozoic rocks with metamorphic degrees from schist to slate, Ailaoshan suture, intrusive rocks with different emplacement ages, and numerous Cenozoic porphyry and shear zone-controlled ore deposits (Yang et al., 2011) (Fig. 2). The Ailaoshan suture separates the Simao block from the South China block (Fig. 1) (Wang et al., 2000). The Ailaoshan suture, formed by the closure of the Ailaoshan branch of Paleo-Tethys ocean in late-

Fig. 1. (a) Simplified geological map showing major tectonic structures due to the collision between the India and Eurasia continents; (b) tectonic map of the SW China showing major tectonic units, Cenozoic faults and porphyry Cu–Au–Mo and orogenic Au deposit. Typical porphyry Cu–Au–Mo deposits constrained by zircon U–Pb and molybdenite Re–Os dating methods include: (1) Yulong, Zalaga, Mangzong, Duoxiasongduo, and Malasongduo in the northern Jinshajiang–Ailaoshan belt (Guo et al., 2006; Hou et al., 2006; Jiang et al., 2006; Liang et al., 2006, 2008; Tang et al., 2009; Wang et al., 2009), (2) Beiya, Machangqing, Yao' an, and Bainichang in the middle (He et al., 2013; Hou et al., 2006; Lu et al., 2012), and (3) Habo and Tongchang in the southern belt (Liang et al., 2007; Wang et al., 2005; Zhu et al., 2009). The orogenic Au deposit includes Zhanyuan (Wang et al., 2001a; phlogopite Ar–Ar inverse isochron age from a mineralized lamprophyre) and Daping (Sun et al., 2009; sericite Ar–Ar plateau age from sericitized diorite). Abbreviation: (1) Sutures: GLS, Garzê–Litang suture; JSJS, Jinshajiang suture; ALSS, Ailaoshan suture; LM–SHS, Longmucuo–Shuanghu suture; CMS, Changning–Menglian suture; BNS, Bangonghu–Nujiang suture; IYS, India river–Yalu–Zangbo suture; SBS, Shan Boundary suture; (2) major Cenozoic fault/shear zone: XSHF, Xianshihe fault; XJF, Xiaojiang fault; ASRRSZ, Ailaoshan–Red River shear zone; LCFS, Lancangjiang fault; JHF, Jinghong fault; MXF, Mengxing fault; DBPF, Dien bien phu fault. Modified after Socquet and Pubellier (2005), Metcalfe (2011), Xu et al. (2011) and Zi et al. (2012).
Permian, is represented by the Ailaoshan ophiolitic belt (Zhong, 1998). The ophiolitic belt comprises peridotites, gabbros, diabase, plagiogranite, and basalts (Mo et al., 1993). An array of subsidiary shear zones was developed in this unit (Leloup et al., 1995). The east-dipping Jiujia–Mojiang shear zone borders the lower-grade metamorphic unit on the west (Fig. 2).

Potassic mafic and felsic magmatic suites with ages of 42–32 Ma are exposed along the Jinshajiang–Ailaoshan suture (Guo et al., 2005; Sun et al., 2009; Zhang et al., 2010) (Fig. 1). The removal of the lower lithospheric mantle was suggested to have triggered the potassic magmatism (Lu et al., 2013). The potassic magmatism caused the formation of dozens of porphyry and skarn Cu (–Mo–Au) ore deposits, e.g., Yulong in the north, Beiya in the middle, and Habo in the south. In the Ailaoshan low-grade metamorphic unit, besides these porphyry ore deposits, several hydrothermal gold ore deposits controlled by the subsidiary shear zones are developed, including Zhenyuan in the northern part and Daping in the southern part. Seismic tomography reveals a west-dipping high velocity anomaly down to ca. 250 km beneath the Simao block (Liu et al., 2000). This high velocity anomaly is explained to represent a part of the plate of South China block underthrust in the Permian and Cenozoic igneous rocks form a kind of mélange, reflecting intense shearing (Fig. 6). For instance, in the Laowangzhai, slices of diabase and meta-ultramafic rocks (serpentinite) and the meta-sedimentary rocks in the Carboniferous Suoshan Formation are juxtaposed (Fig. 7). It is also shown that, in the Donggualing cluster, lamprophyre, and felsic dikes are discontinuously developed along the NW-trending faults, denoting a re-shaping process by shearing (Fig. 4c); and in the Laowangzhai pit, the pod-shaped granite is obviously faulted (Fig. 5).

According to the intense shearing, most primary rock beds were overprinted by jointing. A statistical study of joint fabrics was carried out nearby the fault planes in the two clusters. In the Donggualing ore cluster, the NW to NNW-trending joints are dominant, but some NE to ENE-trending joints are still present. These NE–ENE-trending joints were crosscut and severely re-worked by the NW-trending ones and only a small portion preserved (Fig. 4c). In the Laowangzhai, both the ENE-trending joints and NW-trending ones are present. The coexistence and intersecting of the two different trending joints suggest that the NE–ENE-trending faults were developed before the NW-trending ones instead of a secondary structure to the latter.

3. Deposit structures and mineralization occurrences

3.1. Deposit structures

Structural observations and joint measurement were carried out in the pits of Donggualing and Laowangzhai ore clusters. The structure system is mainly dominated by steep NW-striking shear faults in the Donggualing cluster (Figs. 3, 4, 5) and nearly latitudinal to NE striking faults in the Laowangzhai cluster (Figs. 6, 7). In the Donggualing pit, the fault planes are nearly parallel. In the Laowangzhai pit, two NW-trending thrust faults bound several NW and nearly EW fault planes (Fig. 6). In the Donggualing cluster, the NW-trending faults are developed upon previous folds with NW-trending axes (Figs. 4, 5). In the ore deposit, the different lithologies in the Upper Devonian Kudumu Formation and Carboniferous Suoshan Formation, as well as the Permian and Cenozoic igneous rocks form a kind of mélange, reflecting intense shearing (Fig. 6). For instance, in the Laowangzhai, slices of diabase and meta-ultramafic rocks (serpentinite) and the meta-sedimentary rocks in the Carboniferous Suoshan Formation are juxtaposed (Fig. 7). It is also shown that, in the Donggualing cluster, lamprophyre, and felsic dikes are discontinuously developed along the NW-trending faults, denoting a re-shaping process by shearing (Fig. 4c); and in the Laowangzhai pit, the pod-shaped granite is obviously faulted (Fig. 5).

The orebodies were controlled by the faults as shown in the pits and drill sections (Figs. 4, 5, 6, 7). The orebodies have the shape of veins and lens, characterized by dilation and contraction, thinning and emerging in strike and dip orientation, as shown in the drillhole sections (Figs. 5 and 7). Orebodies have NW strikes in the Donggualing cluster (Fig. 6) whereas those in the Laowangzhai are mainly in latitudinal or NE strikes (Fig. 7) in accordance with the strikes of the dominant faults in the clusters. In Donggualing, some orebodies turn into NW orientation gradually.
as they extend to the Laowangzhai cluster (Fig. 3), suggesting that the NW-trending faults were connected with the previous NE or ENE-trending ones to channel the auriferous fluid. In the Donggualin drillhole section (Fig. 5), the steep faults connected several bed-parallel faults within the previous fold in the shallow part, and formed a complex orebody shape. In contrast, the orebody attitude in the Laowangzhai is relatively regular in the drill section. Sulfide veins and ore lenses occur in the extensional spaces in the fault zones (Fig. 4b, h).

Hydrothermal alteration of country rocks, including sericitization, pyritization, carbonatization, silicification, and chloritization, is significant. Ore minerals are pyrite, chalcopyrite, arsenopyrite, and stibnite. The ores have disseminated, meshlike (Fig. 8a), and brecciated structures (Fig. 8b). The meshlike structure suggests filling by the auriferous fluids into the brittle cracks (Fig. 8A), while the ore minerals experienced further fracturing in younger deformation as the brecciated textures denote. Ore stages include quartz–pyrite, quartz–polymetallic sulfides, quartz–arsenopyrite–pyrite, and calcite–quartz–stibnite–pyrite (Zhao et al., 2013b). Gold occurs mainly as electrum or native Ag. Some samples with low Au content greater than 0.1 g/t are more enriched in As, Ag and Sb than those with gold < 0.1 g/t.

4. Ore geochemistry

4.1. Analytical techniques

The samples from various lithologies and mineralization were collected systematically in the pits of the two clusters. For the whole-rock geochemical analyses, all samples were crushed into 200-mesh using an agate mill. The analyses were performed at the Geological Survey and Laboratory Center of Langfang, China. Major elements were determined by the standard X-ray fluorescence (XRF) method using a Philips Model 1480 spectrometer. Trace elements (As, B, Bi, Cd, Hg, Mo, Sb, W, Cu, Pb, Zn and Ag) were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The detection limits were ≤ 0.1 wt.% for major elements and ≤ 2 ppm for trace elements. Gold was determined by flameless atomic absorption spectroscopy (AAS) method with an uncertainty of 0.2 ppb.

Sulfur isotopic compositions of pyrites were analyzed using a MAT-252 isotope ratio mass spectrometer. Sulfide samples were combusted in the presence of excess CuO in vacuum to produce SO2. The analytical precision is greater than 0.3‰, and the values are reported relative to the Canyon Diablo Troilite (CDT) (Li et al., 2013a).

Measurement of Pb isotopes was performed using a Nu Instrument multi-collector ICP-MS at the Laboratory of Isotope Geology, the Ministry of Land and Resources of China. A Ti-doping method similar to that described by Belshaw et al. (1998) was utilized. Repeat analyses of the NBS 981 Pb isotopic standard gave a reproducibility (2σ) of 208Pb/206Pb = 2.16736 ± 0.00066, 207Pb/206Pb = 0.91478 ± 0.00028, 206Pb/204Pb = 16.9386 ± 0.0131, 207Pb/204Pb = 15.4968 ± 0.0107, and 208Pb/204Pb = 36.7119 ± 0.0331 (±2σ).

4.2. Analytical results

The samples analyzed in this study do not show any obvious preferential elemental enrichment with respect to the lithology (Supplementary Table; Fig. 9). The gold is contained in diverse lithologies, such as slates, granite and meta-sandstone, that are exposed in the pits. Slate is the most common host rock for mineralization. In the limestone, slate, meta-sandstone and granite, rocks with gold content greater than 0.1 g/t are more enriched in As, Ag and Sb than those with gold < 0.1 g/t. One lamprophyre sample with Au content around 10 g/t is remarkably enriched in As and Ag. Some samples with low Au content show high Sb concentration, which can be explained by a Sb-halo being formed around the Au orebody. This feature suggests that the gold-charged fluid generally has elevated content of As, Sb, and Ag.

The δ34S values of the pyrite samples in the ore deposit vary widely, with most values lying between −4 to 2‰, and a peak at 0 per mil (Fig. 10, Table 2). The Laowangzhai orebody cluster shows δ34S values similar to those in Donggualin (Fig. 10a), and the sulfides from different lithologies are also comparable. The δ34S values of pyrite are not diagnostic of the ore sources, as the peak value is compatible with both mantle and average crustal reservoirs. The large variation of δ34S can be explained by the mixing of the different sources or the oxidation effect of a reduced fluid (Hodkiewicz et al., 2009). Since oxidized phases are absent in the ores of this deposit, a mixing model is more favorable.

Lead isotopic compositions of auriferous pyrites in the Laowangzhai are 17.16–18.76, 15.38–15.74, and 37.47–39.24 for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb respectively, and those in the Donggualin are...
The lead isotopes in the Laowangzhai cluster are almost identical to those of the Donggualin (Fig. 11), suggesting that the two clusters share the same metal sources. In the 208Pb/204Pb vs. 206Pb/204Pb diagram (Fig. 11b), most pyrite Pb isotope values in the two orebody clusters plot within the range of western Yunnan amphibolites, which represent one end-member of regional lower crust, and a few in the range of leucogranite. The leucogranite derived from the lower crust formed at a shallower level as compared to the regional amphibolites (Deng et al., 2014b). In the 207Pb/204Pb vs. 206Pb/204Pb diagram, the plots of the two clusters mainly overlap the range for western Yunnan amphibolites and leucogranite, and a few values fall towards the range of BSE (bulk silicate earth) (Fig. 11a). This shows that the ore materials were mainly derived from the lower crust with minor involvement of other sources.

5. Discussion

5.1. Controls on mineralization

The different gold abundances in different lithologies suggest that the mineralization is controlled by the lithology. This is consistent with the conclusion obtained from the enrichment of metallic elements.
in the analyzed samples of varied lithologies. Some of the host rocks are volumetrically more abundant than others in the orebody (Table 1). In the Donggualin orebody cluster, although the lamprophyre is volumetrically minor, it contains a large portion of the Au reserve. A variety of mechanisms have been proposed for the deposition of gold in the mafic igneous rocks, which include fluid–wall rock interaction (Palin and Xu, 2000), phase separation (Hodkiewicz et al., 2009; Palin and Xu, 2000), and mixing of fluids with contrasting redox states (Neumayr et al., 2008). The simple and uniform ore assemblage of sulfides displaying the absence of oxidized phases such as hematite and sulfate minerals, suggests a reduced redox state of the auriferous fluid. Therefore we interpret that the preferential mineralization in the lamprophyre is structurally controlled. Due to the high content of mica group minerals, lamprophyre has weaker mechanical strength than the surrounding meta-sedimentary rocks, and is more easily fractured during shearing, thereby facilitating the infiltration of ore fluids.

5.2. Source of ore fluids and materials

The two ore clusters, although with different orebody strikes, have a similar enriched element association, ore mineral assemblage, and Pb and S isotope compositions, which are indicative of a similar source. The results from Pb and S systematics in this study suggest that the ore-forming materials were mainly derived from lower crust with insignificant mixing from other sources.

Fluid inclusions from the auriferous quartz veins are dominantly NaCl–H₂O and H₂O–CO₂ with high CO₂ content (Bi et al., 1997; Burnard et al., 1999; Liang et al., 2011). Microthermometric measurements showed that the ore fluid is characterized by low salinity (6–8 wt.% NaCl eqv.) and moderate to low temperature (110–250 °C), which is different from the high temperature and salinity of primary magmatic hydrothermal ore deposits. The depth of the ore forming fluids calculated based on fluid inclusions is 0.37–3.74 km (Bi et al., 1997; He and Hu, 1996). The δ¹⁸O ‰ (relative to SMOW) values of the ore fluids range from −50.3 to −105.1‰. The fluid δD/H₂O (SMWD) values show a range of −5.0 to 11.7‰. The fluid δ¹³C O₂ in fluid inclusions from the auriferous quartz lies between −6.5 to −3.9‰, suggesting that the CO₂ in the ore fluid was mainly mantle-derived (Liang et al., 2011). The ³He/²⁰Ne (0.17–0.73 Ra), ⁴⁰Ar/³⁶Ar (308–341), and ³He/heat (0.1–0.8 × 10⁻¹² cm³ STP J⁻¹) of the ore fluids released by crushing pyrite grains (Burnard et al., 1999) showed that the gas in the fluid is a mixture of a mantle-derived and crust-derived components. The ore fluid was thus considered to be mainly metamorphic fluid, with minor involvement of mantle volatiles.
5.3. Deposit genetic type and tectonic setting

The mineral assemblages and enrichment of elements in the ores, high CO₂ content in fluid inclusions, significant involvement of metamorphic fluid, and large contribution of lower crust to metals are compatible with the characteristics of orogenic gold deposits. Therefore the Zhenyan ore system can be categorized as orogenic type (Deng et al., 2014b; Goldfarb et al., 2001, 2014).

Available geochronological data from zircon U–Pb ages and whole rock or mica Ar–Ar ages show that the regional potassic magmatic rocks, including the felsic intrusion and mafic to felsic volcanic rocks, and the lamprophyre were emplaced from 44 to 32 Ma with a peak at 35 Ma (Fig. 13a). The magmatism has been correlated with mantle upwelling and crustal extension (Deng et al., 2014b; Lu et al., 2013). The porphyry ore deposits related to the potassic intrusions were formed in the same time span as inferred from the ages of ore-bearing porphyry and molybdenite (Fig. 13b). The shearing along the ASRRSZ occurred from 32 to 22 Ma (Cao et al., 2011; Sassier et al., 2009; Schärer et al., 1994; Tang et al., 2013; Zhang and Schärer, 1999) and indicated by zircon and monazite U–Pb ages from the leucogranite within the shear zone. The geochronological data show that the ASRRSZ shearing postdated the emplacement of the potassic igneous intrusive rocks.

Table 1
Ore tonnage in different lithologies in the orebodies of the Zhenyuan gold deposit, SW China.

<table>
<thead>
<tr>
<th>Orebody cluster</th>
<th>Laowangzhai</th>
<th>Dongguanlin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orebody no.</td>
<td>III₃</td>
<td>III₂</td>
</tr>
<tr>
<td>Tonnage and grade</td>
<td>1,535,800 t</td>
<td>453,800 t</td>
</tr>
<tr>
<td>5.5 g/t Au</td>
<td>5.5 g/t Au</td>
<td>5.0 g/t Au</td>
</tr>
<tr>
<td>Ore tonnage distribution (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slate and limestone</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>Meta-sandstone</td>
<td>45</td>
<td>6</td>
</tr>
<tr>
<td>Granite</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lamprophyre</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meta-mafic to -ultramafic rocks</td>
<td>39</td>
<td>67</td>
</tr>
</tbody>
</table>
and lamprophyre (Fig. 13a). This temporal sequence is also confirmed by field relations in the Zhenyuan ore deposit, where the mineralized lamprophyre is controlled by the subsidiary shear zones.

An inverse isochron age at 26.4 ± 0.2 Ma from phlogopite in lamprophyre that intruded at ~33 Ma, in the Laowangzhai cluster was obtained and interpreted as the gold mineralization age (Wang et al., 2001a). The mineralization at Zhenyuan is broadly coincident with the culmination of the shearing along the ASRRSZ (Fig. 13). The ore fluid and metal source analysis in Zhenyuan suggests an episode of metamorphism from greenschist to amphibolite along the ASRRSZ occurred at ~27 Ma. The metamorphism is a response to the underthrust of continental lithosphere of South China block (Deng et al., 2014b). The significant involvement of mantle volatiles in the ore fluids suggests that mantle upwelling was most likely ongoing and the underthrust continental plate had not reached the lower-grade metamorphic unit west of the ASRRSZ, with the underthrusting of continental plate underneath inhibiting the mantle degassing (Gonnermann and Mukhopadhyay, 2009; Oppenheimer et al., 2011). The formation of the Zhenyuan gold deposit was considered to have occurred during the transition from mantle upwelling to continental underthrust. This tectonic setting distinguishes the Zhenyuan orogenic ore deposit from other classic orogenic gold deposits, which are mostly widely distributed in accreted terranes along the circum-Pacific margin (Bierlein and Crowe, 2000; Goldfarb et al., 1998, 2001, 2014).

Based on the structural and geochemical data, the formation of the Zhenyuan ore deposit can be envisaged as follows. In the waning stage of mantle upwelling or initiation of shearing, an array of nearly NS-trending faults was formed at ca. 32 Ma (Fig. 14a). At ca. 27 Ma, as the Simao block was largely rotated clockwise, the nearly NS-trending faults turned into NE- and ENE-orientation and might have been further re-worked by the compression-shearing induced by block interaction. Due to the continental underthrust of South China block, the contemporary shearing along the ASRRSZ reached the climax, and the NW-trending subsidiary shear zone was developed to the west of ASRRSZ, cutting across the re-orientated NE- and ENE-faults (Fig. 14b). Meanwhile, the underthrusting caused the regional metamorphism releasing...
gold-bearing metamorphic fluids. The fluid migrated westwards along the subsidiary metamorphic zones, with input of volatiles discharged from the upwelled mantle. In the brittle fault network, the ore fluid deposited metals within various lithologies (Fig. 14c).

5.4. Regional metallogenesis

The Daping ore deposit, another shear zone-controlled one in the southern part of the low-grade metamorphic unit, formed at ~33 Ma according to the plagiogpite Ar–Ar inverse isochron age (Fig. 13b). The metallogenesis is contemporary to the initial movement of the ASRRSZ (Sun et al., 2009). Ore minerals in this deposit include scheelite, pyrite, chalcopyrite, galena, bornite, and sphalerite. Fluid inclusions from the Daping show homogenization temperatures of 299–380 °C. Compared to the Zhenyuan ore deposit, the ore-forming fluids in Daping have higher temperature and greater depth. The gold deposits are located in subsidiary shear zone, and not in the first-order structures of ASRRSZ. It might be ascribed to that the ore fluids were expelled from the first-order shear zones due to the outward decrease in pressure.

Contemporary to the ASRRSZ, the NNW-trending shear zones of Chongshan and Gaoligong were formed in the Sanjiang region due to the India–Eurasia continent collision (Socquet and Pubellier, 2005). Although the kinematic features of these two shear zones are analogous to those of the ASRRSZ (Deng et al., 2014b), there is no noticeable mineralization along these two zones. The barren nature of the two shear zones was suggested to have formed in a ductile–brittle transition zone (Sun et al., 2009). In contrast, the low temperature of ore fluid, limited depth, as well as the cataclastic structures in the Zhenyuan ore deposit suggest that metamorphic fluids migrated upwards along shear zones into the brittle domain in the shallow crust.

The compression due to the continental underthrust might have induced an increase of rock pressure and grade of metamorphism in crust, releasing Au-charged metamorphic fluid. The extensive development of shear zones facilitated the upward transportation of the ore fluids from depth. The gold deposits are located in subsidiary shear zone, and not in the first-order structures of ASRRSZ. It might be ascribed to that the ore fluids were expelled from the first-order shear zones due to the outward decrease in pressure.

Table 2

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Mineral</th>
<th>Sample locations</th>
<th>Host lithology</th>
<th>δ34S ‰</th>
<th>Data sources</th>
<th>Sample no.</th>
<th>Mineral</th>
<th>Sample locations</th>
<th>Host lithology</th>
<th>δ34S ‰</th>
<th>Data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>L04-1 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>−0.9</td>
<td>This paper</td>
<td>LTZ-34 Pyrite</td>
<td>Laowangzhai</td>
<td>Limestone</td>
<td>−8.38</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L04-2 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>5.3</td>
<td>This paper</td>
<td>LTZ-1 Pyrite</td>
<td>Laowangzhai</td>
<td>Limestone</td>
<td>0.6</td>
<td>This paper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L04-3 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>−11.2</td>
<td>This paper</td>
<td>LTZ-26 Pyrite</td>
<td>Donggualin</td>
<td>Limestone</td>
<td>0.57</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L04-4 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>0.1</td>
<td>This paper</td>
<td>LTZ-36 Pyrite</td>
<td>Laowangzhai</td>
<td>Limestone</td>
<td>4.04</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L04-5 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>−7.5</td>
<td>This paper</td>
<td>LTZ-37 Pyrite</td>
<td>Laowangzhai</td>
<td>Limestone</td>
<td>6.7</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L07-1 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>−3.8</td>
<td>This paper</td>
<td>LTZ-3 Wolfsbergite</td>
<td>Laowangzhai</td>
<td>Altered ultrabasic rocks</td>
<td>0.51</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L08-2 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>−3.2</td>
<td>This paper</td>
<td>LTZ-9 Pyrite</td>
<td>Laowangzhai</td>
<td>Altered ultrabasic rocks</td>
<td>3.6</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L12-7 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>−4.1</td>
<td>This paper</td>
<td>LTZ-16 Pyrite</td>
<td>Laowangzhai</td>
<td>Altered ultrabasic rocks</td>
<td>0.48</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L53-1 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>−19.1</td>
<td>This paper</td>
<td>LTZ-8 Pyrite</td>
<td>Laowangzhai</td>
<td>Altered ultrabasic rocks</td>
<td>−1.63</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D00-1 Pyrite</td>
<td>Donggualin Slate</td>
<td>−1.5</td>
<td>This paper</td>
<td>I139 Pyrite</td>
<td>Laowangzhai</td>
<td>Altered basalt</td>
<td>1.2</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D08-8 Pyrite</td>
<td>Donggualin Slate</td>
<td>−2.8</td>
<td>This paper</td>
<td>I119 Pyrite</td>
<td>Laowangzhai</td>
<td>Altered basalt</td>
<td>2.7</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D14-6 Pyrite</td>
<td>Donggualin Slate</td>
<td>1.8</td>
<td>This paper</td>
<td>LTZ-8 Pyrite</td>
<td>Laowangzhai</td>
<td>Altered basalt</td>
<td>−0.36</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTZ-7 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>−0.37</td>
<td>Hu et al. (1995)</td>
<td>LTZ-10 Pyrite</td>
<td>Laowangzhai</td>
<td>Altered basalt</td>
<td>1.89</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTZ-8 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>−5.57</td>
<td>Hu et al. (1995)</td>
<td>LTZ-12 Pyrite</td>
<td>Laowangzhai</td>
<td>Altered basalt</td>
<td>0.81</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTZ-11 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>1.34</td>
<td>Hu et al. (1995)</td>
<td>LTZ-13 Pyrite</td>
<td>Laowangzhai</td>
<td>Altered basalt</td>
<td>0.2</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTZ-12 Pyrite</td>
<td>Wolfsbergite</td>
<td>0.68</td>
<td>Hu et al. (1995)</td>
<td>LTZ-15 Pyrite</td>
<td>Laowangzhai</td>
<td>Altered basalt</td>
<td>15.41</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTZ-2 Pyrite</td>
<td>Donggualin Slate</td>
<td>−0.18</td>
<td>Hu et al. (1995)</td>
<td>LTZ-17 Pyrite</td>
<td>Laowangzhai</td>
<td>Altered basalt</td>
<td>1.13</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTZ-4 Pyrite</td>
<td>Donggualin Slate</td>
<td>−0.86</td>
<td>Hu et al. (1995)</td>
<td>LTZ-20 Pyrite</td>
<td>Laowangzhai</td>
<td>Altered basalt</td>
<td>1.3</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTZ-8 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>−0.54</td>
<td>Hu et al. (1995)</td>
<td>LTZ-21 Pyrite</td>
<td>Laowangzhai</td>
<td>Altered basalt</td>
<td>−2.37</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTZ-14 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>1.89</td>
<td>Hu et al. (1995)</td>
<td>LTZ-29 Pyrite</td>
<td>Laowangzhai</td>
<td>Lamprophyre</td>
<td>0.21</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTZ-22 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>0.08</td>
<td>Hu et al. (1995)</td>
<td>LTZ-29 Pyrite</td>
<td>Laowangzhai</td>
<td>Lamprophyre</td>
<td>−14.5</td>
<td>This paper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTZ-23 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>−0.1</td>
<td>Hu et al. (1995)</td>
<td>LTZ-29 Pyrite</td>
<td>Donggualin</td>
<td>Lamprophyre</td>
<td>−0.44</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTZ-27 Pyrite</td>
<td>Laowangzhai Slate</td>
<td>−6.79</td>
<td>Hu et al. (1995)</td>
<td>LTZ-29 Pyrite</td>
<td>Donggualin</td>
<td>Lamprophyre</td>
<td>−0.12</td>
<td>Hu et al. (1995)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 10. Sulfur isotope compositions of sulfides in the Donggualin and Laowangzhai orebody clusters of the Zhenyuan ore deposit, SW China. The data are listed in Table 2.
Table 3
Lead isotopes in pyrite from the Zhenyuan deposit, China.

<table>
<thead>
<tr>
<th>Number</th>
<th>Location</th>
<th>206Pb/204Pb</th>
<th>207Pb/204Pb</th>
<th>208Pb/204Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>L02-2</td>
<td>Laowangzhai</td>
<td>18.01</td>
<td>15.60</td>
<td>38.39</td>
</tr>
<tr>
<td>L04-1</td>
<td>Laowangzhai</td>
<td>18.64</td>
<td>15.72</td>
<td>39.04</td>
</tr>
<tr>
<td>L04-2</td>
<td>Laowangzhai</td>
<td>18.57</td>
<td>15.74</td>
<td>39.08</td>
</tr>
<tr>
<td>L04-3</td>
<td>Laowangzhai</td>
<td>18.64</td>
<td>15.74</td>
<td>39.08</td>
</tr>
<tr>
<td>L04-4</td>
<td>Laowangzhai</td>
<td>18.76</td>
<td>15.73</td>
<td>39.24</td>
</tr>
<tr>
<td>L05-5</td>
<td>Laowangzhai</td>
<td>18.62</td>
<td>15.72</td>
<td>39.10</td>
</tr>
<tr>
<td>L07-1</td>
<td>Laowangzhai</td>
<td>18.47</td>
<td>15.70</td>
<td>38.88</td>
</tr>
<tr>
<td>L08-2</td>
<td>Laowangzhai</td>
<td>18.31</td>
<td>15.70</td>
<td>38.48</td>
</tr>
<tr>
<td>L11-4</td>
<td>Laowangzhai</td>
<td>18.10</td>
<td>15.62</td>
<td>38.50</td>
</tr>
<tr>
<td>L12-2</td>
<td>Laowangzhai</td>
<td>18.43</td>
<td>15.71</td>
<td>38.71</td>
</tr>
<tr>
<td>L12-6</td>
<td>Laowangzhai</td>
<td>17.16</td>
<td>15.38</td>
<td>37.47</td>
</tr>
<tr>
<td>L12-7</td>
<td>Laowangzhai</td>
<td>18.49</td>
<td>15.70</td>
<td>38.88</td>
</tr>
<tr>
<td>L53-1</td>
<td>Laowangzhai</td>
<td>18.54</td>
<td>15.72</td>
<td>38.91</td>
</tr>
<tr>
<td>D03-2</td>
<td>Donggualin</td>
<td>18.57</td>
<td>15.71</td>
<td>38.93</td>
</tr>
<tr>
<td>D04-1</td>
<td>Donggualin</td>
<td>18.54</td>
<td>15.70</td>
<td>38.89</td>
</tr>
<tr>
<td>D08-8</td>
<td>Donggualin</td>
<td>18.60</td>
<td>15.72</td>
<td>38.96</td>
</tr>
<tr>
<td>D14-6</td>
<td>Donggualin</td>
<td>18.32</td>
<td>15.67</td>
<td>38.74</td>
</tr>
</tbody>
</table>

Fig. 11. Lead isotope compositions of sulfides from the Donggualin and Laowangzhai orebody clusters of the Zhenyuan ore deposit, SW China. (a) 207Pb/204Pb vs. 206Pb/204Pb. (b) 208Pb/204Pb vs. 206Pb/204Pb. The diagram is from Lu et al. (2013). Mantle source reservoirs BSE, MORB, DMM, EM I, and EM II are from Zindler and Hart (1986). Indian MORB and Pacific MORB are after Guo et al. (2005). The Northern Hemisphere Reference Line (NHRL) is from Hart (1984). Data for leucogranite are from Zhang and Schärer (1999) and those for amphibolite xenoliths in the potassic felsic intrusion are from Deng et al. (1998) and Zhao et al. (2004).

Fig. 12. δ^{18}O and δ^{13}C isotope compositions of auriferous fluid in the orogenic Au deposit in the Ailaoshan tectonic belt, SW China. The δ^{18}O$_{H_{2}O}$‰ (relative to SMOW) values of the ore-forming fluids are calculated by the values of auriferous quartz based on the isotopic fractionation equation in equilibrium, and δ^{13}C$_{H_{2}O}$ (SMWD) values of the water were analyzed directly from the fluid inclusions. The magmatic, metamorphic, and organic fields are from Sheppard (1986). The field for orogenic gold deposit is from Goldfarb et al. (2004) and that for the Navada gold deposit is from Field and Fifarek (1985) Age data for the Zhenyuan ore deposit are from Hu et al. (1995) and Liang et al. (2011), and those in the Daping ore deposit from Sun et al. (2009).

Fig. 13. Age histogram of Cenozoic igneous rocks, porphyry Cu–Au–Mo deposit, and orogenic Au deposit along the Jinshajiang–Ailaoshan belt, SW China. The time for the potassic magmatism including felsic intrusion, mafic-intermediate volcanic rocks and lamprophyre is 44–32 Ma. The subsequent ductile left-lateral shearing along Ailaoshan–Red River shear zone is limited in 32–22 Ma by the age of the leucogranite within the shear zone. The emplacement ages of the igneous rocks are from Cao et al. (2011), Chung et al. (1997), Flower et al. (2013), Guo et al. (2005, 2006), He et al. (2013), Huang et al. (2010), Jia et al. (2013), Jiang et al. (2006), Leloup et al. (2001), Liang et al. (2006, 2007, 2008, 2009), Lu et al. (2012), Sassier et al. (2009), Schärer et al. (1994), Spurlin et al. (2005), Tang et al. (2013), Wang et al. (2001b, 2003, 2009) and Zhang and Schärer (1999); and the formation ages of the ore deposits are the same as Fig. 1.
extrusion of Indochina block, these nearly NS-trending zones were rotated clockwise to the current orientation and were further cut by the NW-trending shear zones. The later NW-trending faults controlled the mineralization in the Laowangzhai orebody cluster.

The ore mineral assemblages, enrichment in metallic elements, and S–Pb isotopic compositions are generally comparable in the two clusters, suggesting that they share a coeval and analogous ore-forming process. The S and Pb isotopes, in combination with the previously published H–O–He–Ar isotopic data, indicate that the ore fluid was mainly composed of metamorphic fluid with important input of mantle volatiles. The ore-forming metals were dominantly derived from the lower crust.

The Zhenyuan ore deposit is classified as orogenic type, with a unique tectonic setting of continental underthrust and concomitant mantle upwelling. The underthrusting of South China lithosphere was the potential trigger for the release of the Au-charged metamorphic fluid. The fluid was further channeled by subsidiary shear zones forming several orogenic gold deposits at different depths to the west of the Ailaoshan–Red River shear zone.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.oregeorev.2014.08.002.

Acknowledgements

The constructive comments and careful revisions from the editor-in-chief F.M. Pirajno, associate editor, and two reviewers are greatly appreciated. We sincerely thank the leaders and engineers in the Zhenyuan chief F.M. Pirajno, associate editor, and two reviewers are greatly appreciated. We sincerely thank the leaders and engineers in the Zhenyuan gold deposit for their support during our fieldwork. This work was supported by the National Key Basic Research Development Program (2000CB421008), Planning Project of China Geological Survey (12120114039701).

References

