Transconductance improvement technique for bulk-driven OTA in nanometre CMOS process

Xiao Zhao, Huajun Fang, Tong Ling and Jun Xu

A transconductance improvement technique for a bulk-driven operational transconductance amplifier (OTA) working in the weak inversion region is presented. Using the quasi-floating gate method, the proposed technique achieves larger transconductance improvement than conventional approaches with the CMOS technologies scaling. Moreover, its enhanced performance is at no expense of the power budget. Simulated on UMC 180 nm technology, the results demonstrate that the proposed bulk-driven OTA achieves more than two times gain-bandwidth improvement than that of the traditional counterpart with the same power.

Introduction: With the CMOS technology scaling, ultra-low-voltage and ultra-low-power analogue circuits are in increasing demand for portable electronic equipment [1]. The operational transconductance amplifier (OTA) is the mostly used and has the largest power consumption. For low-voltage and low-power applications, the bulk-driven OTA working in the weak inversion region is a good choice [2]. Nevertheless, the reduction in the g_{m1}/g_{m0} ratio with the CMOS technologies scaling is the main obstacle, which leads to gain-bandwidth (GBW) degradation. In recent years, some techniques have been used to improve the effective transconductance of the bulk-driven OTA [3–6]. Especially in [3], the positive-feedback source degeneration technique is adopted in bulk-driven input differential pairs to improve the transconductance of the OTA. Moreover, with the g_{m1}/g_{m0} ratio decreasing, the effective transconductance of the OTA instead increases. The energy efficiency g_{m1}/I is improved with the CMOS technology scaling, and thus this technique is suitable for the nanometre CMOS process.

In this Letter, a more effective transconductance improvement technique for the bulk-driven OTA is presented. The proposed technique, utilising the quasi-floating gate method [7], not only obtains a larger transconductance enhancement factor with technology scaling than that in [3], but also does not consume additional power.

Proposed transconductance improvement technique: The bulk-driven OTA with a positive-feedback source degeneration differential pair (PBD) is shown in Fig. 1. Transistors M_1 and M_2 are configured as positive-feedback source degeneration, which enhance the transconductance of input pairs M_3 and M_4. Thus, the effective transconductance (G_m) of the OTA can be expressed as

$$G_m \simeq \left(1 + \frac{1}{\eta} \right) g_{m13} \tag{1}$$

where η is the ratio of g_{m1}/g_{m0} and g_{m13} is the bulk transconductance of transistor M_3. Note that when compared with the traditional bulk-driven OTA, the G_m of the PBD is improved by a factor of $1 + 2/\eta$, and also it greatly increases with decreasing η owing to the CMOS technology scaling.

A bulk-driven OTA with the proposed quasi-floating differential input pair (QFBD) is shown in Fig. 2. The enhanced input stage consists of four matched transistors: M_5, M_6, M_7, and M_8 with equal size ratio. Transistors M_5 and M_6 are also configured as positive-feedback source degeneration, while transistors M_7 and M_8 are configured as quasi-floating gate transistors. Their gate is connected to the bulk through capacitors C_5 and C_6 and to ground through a large-valued resistor R_{hg}. The transistors M_5 and M_6 form a highpass filter. The cutoff frequency is around $1/(2\pi R_{hg} C_1)$. By using the reverse bias diode-connected PMOS transistors M_5 and M_6, R_{hg}, and C_5, C_6 form a highpass filter. The cutoff frequency is about $1/(2\pi R_{hg} C_1)$, and the amplitude of the bulk input signal transferred to the gate is $k = C_1/(C_1 + C_5)$, where C_5 is the capacitance at the gate node. Owing to the large-value resistance used, the cutoff frequency can be lower than 1 Hz. Also, in practice, C_5 can be neglected in comparison with C_1, thus k is approximately equal to 1. From the small-signal analysis of Fig. 2, the G_m of the proposed QFBD OTA results in the following expression:

$$G_m = \left(1 + \frac{1}{\eta} + \frac{k}{\eta} \right) g_{m13} \simeq \left(1 + \frac{1}{\eta} \right)^2 g_{m13} \tag{2}$$

Note that the G_m of the proposed QFBD OTA is improved by a factor of $(1 + 1/\eta)^2$, which is proportional to the square of $1/\eta$, whereas that of the PBD OTA has a linear relationship with $1/\eta$. Therefore, with the decreasing of η, the G_m of the QFBD OTA is enhanced greater than that of the PBD counterpart, leading to higher energy efficiency. At the same time, the improved performance does not increase additional power dissipation or the supply voltage requirements.

ELECTRONICS LETTERS 22nd October 2015 Vol. 51 No. 22 pp. 1758–1759
The relationship between the G_m enhancement factor against η of the two OTAs is shown in Fig. 3. Note that the increasing trend of the proposed QFBD OTA is much faster than that of the PBD as η decreases. It indicates that the proposed technique effectively enhances G_m for the bulk-driven transistor in weak inversion as the CMOS technology scaling. The proposed QFBD OTA obtains a better energy efficiency G_m/I, and is thus suitable for low-voltage and low-power applications.

Simulation results: The two OTAs shown in Figs. 1 and 2 with simulated on UMC 180 nm process. The supply voltage is 0.5 V, and the threshold voltages of NMOS and PMOS are 0.4 and 0.47 V, respectively. The AC response of the two OTAs is shown in Fig. 4, and the load capacitance C_L is 15 pF. Note that the GBW of the proposed QFBD OTA is 10.37 kHz, which is improved by 120% over that of the PBD OTA with the same power. Fig. 5 shows the small-signal transient response of the two OTAs. A square wave of 50 mV is generated by a function generator at 2.5 kHz. Note that the settling time of the proposed QFBD OTA has a significant boost due to the enhancement of the GBW. The simulation results of key parameters of the two OTAs are listed in Table 1.

Conclusion: Using the quasi-floating gate method, a more effective transconductance improvement technique for the bulk-driven OTA working in the weak inversion region is presented in this Letter. The proposed technique achieves larger transconductance improvement performance with the technologies scaling. Simulated on UMC 180 nm technology, the proposed OTA obtains more than two times GBW than that of the conventional counterpart with the same power.

Acknowledgments: This work was supported by the Fundamental Research Funds for the Central Universities of China (no. 2652014070) and the NSFC (no. 11227202).

© The Institution of Engineering and Technology 2015
Submitted: 13 May 2015 E-first: 12 October 2015
doi: 10.1049/el.2015.1559
One or more of the Figures in this Letter are available in colour online.
Xiao Zhao (School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, People’s Republic of China)
Huajun Fang, Tong Ling and Jun Xu (Institute of Microelectronics, Tsinghua University, Beijing 100084, People’s Republic of China)
✉ E-mail: hjfang@tsinghua.edu.cn

References

Fig. 4 AC response of PBD and QFBD OTAs

Fig. 5 Transient response of PBD and QFBD OTAs

Table 1: Performance summary of two OTAs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PBD</th>
<th>QFBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage supply (V)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>C_L (pF)</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>GBW (kHz)</td>
<td>4.35</td>
<td>10.37</td>
</tr>
<tr>
<td>Open-loop gain (dB)</td>
<td>61.7</td>
<td>68.7</td>
</tr>
<tr>
<td>Power of OTAs (nW)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Phase margin (°)</td>
<td>83.1</td>
<td>73.2</td>
</tr>
<tr>
<td>1% Settling time (μs)</td>
<td>158</td>
<td>69</td>
</tr>
<tr>
<td>FoM (V−1)</td>
<td>163</td>
<td>389</td>
</tr>
</tbody>
</table>