Genesis of the Saishitang skarn type copper deposit, West Qinling, Qinghai Province: Evidence from fluid inclusions and stable isotopes

Yingchuan Lu a,b,* , Jiajun Liu a,e, Dong Zhang b, Emmanuel John M. Carranza c, Degao Zhai a, Liangsheng Ge b, Hao Sun b, Bin Wang b, Yongfu Chen a,b, Peng Liu b

a State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
b Gold Geological Institute of CAPF, Langfang 065000, China
c Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA

A B S T R A C T
The Saishitang skarn type copper deposit, located in the southeast part of the Dulan–Ela Mountain Triassic volcanic–magmatic arc and forearc accretionary wedge, belongs to the Tongyugou–Saishitang tin–copper polymetallic ore field in West Qinling, Qinghai province. Based on the contact/crosscutting relationships, mineral associations and mineralization characteristics, hydrothermal fluid evolution can be divided into three stages: skarn (I), quartz sulfide (II) and polymetallic sulfide-bearing quartz–calcite vein (III). The quartz sulfide stage (II) can be further divided into a massive sulfide stage (II-1) and a layered sulfide stage (II-2). This paper presents detailed analysis of fluid inclusions, δ18O, S and Pb isotope compositions of rock samples from each of the above three stages as well as analysis of fluid inclusions from quartz diorite. The homogenization temperature, salinity, density and pressure of fluid inclusions in quartz diorite and typical transparent minerals showed a tendency of gradual decline in these evolutionary stages. The ore-forming fluid can be classified as a Na+–Ca2+–SO42––Cl– system with a minor proportion of a Na+–Ca2+–NO3––SO42– system, which likely resulted from mixing of magmatic and formation water. The δ34S (CDT) values (−6.45 to 5.57‰) and Pb isotope compositions show that the ore-forming materials were mainly derived from magmatic fluid. Ore-forming fluid was boiling during the main ore-forming stage (II-1) due to pressure decrease. Consequently, the physical and chemical conditions (i.e., pH, Eh, fO2, fH2) changed, and metallic elements (including Cu) in the fluid could no longer exist in the form of complexes and precipitated from the fluid. According to the integrated analysis of ore features, mineral associations, alteration characteristics, ore-forming environment and fluid evolutionary process, it is concluded that the Saishitang deposit is a typical skarn deposit.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction
The Qinling orogenic belt (QOB), which is a composite continental orogenic belt, is an important part of central orogenic system of mainland China (Zhang et al., 2001; Liu et al., 2015a, 2015b). The Western Qinling Mountains are the western extension of the QOB and are located between the northeastern margin of the Qinghai–Tibet Plateau and the northwestern margins of the Yangtze Plate, South Qilian Mountains and East Kunlun Mountains (Zhang et al., 2004). They form the western Qinling orogenic belt (WQOB) in the Qinling–Qilian–Kunlun metallogenic domain, which provides nonferrous and precious metal resources to Qinghai Province.

Situated on the western margin of the WQOB is the Tongyugou–Saishitang copper–polymetallic ore field. This ore field, which is one of the most important regions of copper resources in Qinghai or even in China (Song et al., 1995; Liu et al., 2008a), is comprised of the large-scale Tongyugou copper deposit (a total resource of more than 500,000 tons), the medium-scale Saishitang copper deposit (a total resource of 444.8 thousand tons) (Liu et al., 2008b), the Rilonggou stannous-polymetallic ore deposit, the Gakehe copper–silver–arsenic deposit, and the Lajiehui molybdenum–copper occurrence. These deposits, particularly the Saishitang, have distinct geological and geochemical features compared to other large-scale skarn deposits in the WQOB, and represent a specific type of mineralization that is rarely reported in western literature.

Due to the diversity and distinctiveness of ore types in the Saishitang ore field, there is no consensus among previous researchers (Qiu and Dong, 1978; Lin, 1983; Lu, 1990a; Li et al., 1993; Tian, 1999 and Wu, 2010) regarding the genesis of the Saishitang copper deposit.
Strata-bound-, skarn- and porphyry-type styles of mineralization have been proposed for this deposit. Despite the volume of research spent on this deposit, the fluid inclusion aspect of the deposit, which is critical to a comprehensive understanding of ore genesis, is much less studied. The characteristics of ore-forming fluid provide important clues for understanding the genesis of ore deposits (e.g., Zhu et al., 2001; Fan et al., 2003; Xu et al., 2006). Therefore, it is necessary to consider in more detail the origin and evolution of hydrothermal fluids responsible for the Saishitang copper deposit.

In this paper, we discuss results of geological investigations, ore microscopy, fluid inclusion micro-thermometry, O–H and S isotope measurements, which help to clarify the ore genesis of the Saishitang Cu deposit. We also discuss the P–T conditions during mineral–fluid evolution of the Saishitang Cu deposit based on fluid inclusion data to further constrain the fluid origin of the deposit.

2. Geological background

The Saishitang copper–polymetallic ore deposit is located in the Dulan–E’la Mountain Triassic volcanic–magmatic arc and the southeast part of the fore-arc accretionary wedge (Wu, 2010). This is the junction between the WQOB and the Eastern Kunlun orogenic belt (Fig. 1a). The Carboniferous–Early Permian was once the northern branch of eastern Kunlun Ocean, with collision and extrusion occurring in east–west direction in early Triassic. Late Triassic adakite magmatism occurred in this region along the middle Kunlun fault (Zhang and Zhu, 2001). Rock-controlling and ore-controlling characteristics are shown to be composite tectonic features with east-to-west and northwest trends (Zhan et al., 2007).

The lithologies of the WQOB consist of the Paleoproterozoic Jinshuikou Group, the Carboniferous–Middle Permian Ganjia Group, the Lower–Middle Triassic Longwuhe Group, continental volcanic rocks of the Upper Triassic E’la Mountain Group, red glutennie of the Neogene Guide Group, mudstone, Pleistocene moraine of the Quaternary system and Upper Epipleistocene proluvium. The Ganjia Group is a sequence composed of a combination of clastic and carbonate rocks. The Longwuhe Group is composed of gray feldspar–quartz metamorphic rock, silty and clay slate, and bedded gravel-bearing felsspar lithic sandstone.

Faults with NW, E–W trending, and occasionally NE and nearly N–S trends are the dominant tectonic structures in the region. The E–W and NW-trending faults are closely associated with the mineralization. Four

![Sketch geological map of Saishitang copper deposit](image)
types of folding were developed. The first type is recumbent folding, developed in the Proterozoic block. The second type is folding (type-A fold) associated with thrusting and strike-slip shearing, and is developed in the strong deformation zone and shows features of shallow tectonic levels. The third type is overturned folding with same inclination developed in the thrust fault-fold belt. The fourth type is folding with N–NW trends is multi-hinge and high-angle pitch. Stage four folds consist of the Xueqinggou anticlinorium, the Saishitang anticline, the Tongyugou short-axis anticline, and the Rilonggou anticline.

The magmatic rocks in this region can be divided into four categories: (1) diorite porphyrite; (2) quartz diorite (221.7 ± 2.8 Ma, unpublished result), quartz diorite porphyrite (223.2 ± 2.2 Ma; Liu et al., 2012); (3) plagiogranite porphyry; (4) granitic porphyry (219 ± 2.6 Ma; Liu et al., 2012), quartz porphyry and fine-grained granite. The second category of intrusions represents the largest scale of igneous activity and resulted in the emplacement of quartz–diorite, which represents the bulk of the Saishitang composite rock mass. This rock is fine-grained hypautomorphic granular texture with a blocky structure, and pervasive sericitization and chloritization (Lai et al., 2010).

3. Ore deposit geology

The rock units in the Saishitang ore field consist of Lower Permian and Tertiary lithologies and Quaternary loose or semi-consolidated deposits. The Lower Permian series is the main ore-bearing strata consisting of the fifth, sixth and seventh lithologic units of the formation. The fifth lithologic unit is medium to thick layer of gray metamorphosed fine-grained feldspathic quartz sandstone interbedded with sericite phyllite. The sixth lithologic unit is off-white metamorphosed fine-grained feldspathic quartz sandstone, metamorphosed fine-grained quartz sandstone and sericite phyllite. The seventh lithologic unit is off-white banded metamorphosed siltstone, biotite phyllite, marble, and off-white marble interbedded with skarn (Fig. 2a).

Multiple faults with E–W, WNW, NNW and NE trends are present in the Saishitang ore field. Some rock-controlling and ore-controlling structures are associated with folds. Fold activity was dominated by compression-shear and partly by tension-shear. Folds are among the most important structural features in the Saishitang ore field, and they can be divided into: (1) tight homoclinal folds; (2) NW–NNW-trending Alpine-style linear folds; (3) nearly NE-trending folds and (4) NNE–NE-trending folds. The interlayer detachment zone or detachment fault zone related to (1) and (2) types of folds are the most important rock-controlling and ore-controlling structures during the metallogenic period (Zhu et al., 2012).

Quartz diorite (with the U–Pb age of 221.7 ± 2.8 Ma, unpublished result) is the main intrusive rock in the Saishitang ore field, followed by quartz diorite porphyry, quartz porphyry and dacite porphyry. It generally occurs as sheet-like and bed-like shape, and some are in apophyses and veins. It is fine- and medium-grained type, and the medium-grained quartz diorite commonly intrudes into the fine-grained quartz diorite, with the existence of xenolith of the latter in the former.

The immediate host to ore bodies in the Saishitang ore field is the quartz diorite (Tian, 1999; Li et al., 2009), which occurs as sills (~500 m-thick), dykes (~50–500 m-thick) and dykelets (~20 m-thick). The quartz diorite typically shows a porphyritic texture, and primary minerals include plagioclase (~20 vol.%), hornblende (~15 vol.%), quartz (~5 vol.%), biotite (~5 vol.%) and minor microcline. Plagioclase phenocrysts are commonly tabular in shape, and display rhythmic zonings and polysynthetic twinings. They have been mainly overprinted by sericite (Fig. 3e), and occasionally by chlorite and epidote. Hornblende has been replaced by epidote (Fig. 3f). Sulfide minerals including bornite (~5 vol.%), pyrite (~3 vol.%) and chalcopyrite (~1 vol.%) are also present in the intensely-altered quartz diorite (Fig. 3h and i).

The ore bodies mainly exist in the skarn contact zone between quartz diorite and marble (Fig. 2b). The ore-bearing porphyry has experienced complete alteration, with an increase of copper content in the rock from the ore-bearing rock outwards to the contact zone. Beyond the contact zone the copper content decreases gradually (Li et al., 2009). By detailed geological survey, ore exploration and documentation, the contact or alteration relationship of rocks, mineral assemblage and mineralization characteristics were summarized. The evolution of ore-forming process was divided into three stages: (I) magmatic (quartz diorite) skarn stage; (II) quartz-sulfide stage; and (III) late sulfide-bearing quartz–carbonate vein stage. The quartz–sulfide stage was subdivided into massive sulfide stage (II-1) and layered metal sulfide rock stage (II-2).

In the quartz diorite bodies, no mineralization occurred in the skarn stage (I). The main skarn minerals are garnet (about 35%), clinopyroxene (about 30%) and vesuvianite (about 25%). Skarns near the quartz diorite intrusion are garnet-rich, with garnets being either tightly packed together or fine- to medium-grained (Fig. 3g). Tightly packed garnets always coexist with clinopyroxene, the former being located closer to the intrusive body. Partial replacement of garnet by vesuvianite (Fig. 3g) shows that garnet formed earlier than vesuvianite. Fine- to medium-grained clinopyroxenes, some of which have quartz-filled crystal gaps, do not co-exist with garnets (Fig. 3h).

Rocks associated with stages II-1 and II-2 are either massive (Fig. 3b) or layered (Fig. 3c). Ores are dominated by chalcopyrite, bornite, pyrite and sphalerite. Replacement of nonmetallic mineral by bornite indicates that the latter formed later than the former (Fig. 3i). Chalcopyrite usually coexists with bornite (Fig. 3j), and both minerals are separated from the solid solution of chalcopyrite and sphalerite (Fig. 3k). Gangue minerals are mainly quartz, tremolite and fluorite. Polymetallic sulfide-bearing quartz–calcite veins (stage III) filled fractures (Fig. 3d), associated pyrite, chalcopyrite and bornite (Fig. 3i).

4. Analysis of fluid inclusions

4.1. Sampling and analytical method

Samples of quartz diorite were collected from the Saishitang ore field (sample No.: 12SST-09-1, 12SST-20 and 12SST-27). Samples were also collected from skarn stage (I: 12SST-26, 12SST-28), quartz–sulfide stage (massive copper ore, II-1, 12SST-12; layered copper ore, II-2, 12SST-21) and late sulfide-bearing quartz–calcite vein stage III, 12SST-24, 12SST-25). From each of these stages of ore-forming process, the most representative minerals were sampled for analysis. The specific sampling locations were shown in Fig. 2b. The host minerals of fluid inclusions in samples for the temperature measurement are: quartz phenocrysts, amphibole, epidote and ordinary quartz from quartz diorite; garnet, clinopyroxene, tremolite and vesuvianite from stage I; quartz from stage II-1; quartz, fluorite and clinopyroxene from stage II-2, and quartz from stage III. These different mineral assemblages reflect diverse hydrothermal environments. Quartz phenocrysts and amphibole in quartz diorite reflect the temperature during condensation of magmatic hydrothermal fluid. The features of the samples are listed in Fig. 3.

Temperature measurements from fluid inclusions were carried out at the fluid inclusion laboratory in China University of Geosciences Beijing. The Linkam THMSE-600 (Linkam, England) heating and freezing stage was used. The reproducibility error of measuring homogenization temperature was kept below 2°C, while the reproducibility error of measuring freezing temperature was kept below 0.2°C. When measuring freezing temperature, liquid nitrogen was used for rapid cooling of the inclusions. Thus, the liquid phase was completely solidified, and the changes of the inclusions were observed as the temperature declined. When temperature dropped to −120°C, the temperature was then raised slowly until the last ice crystal melted. The freezing temperature was thus measured. When the phase approached the homogenized state, the
The rate of temperature rise was reduced, and the homogenization temperature was recorded timely. For type H (multiphase inclusions containing daughter minerals) inclusions containing mineral crystals, heating was employed to determine the melting temperature of NaCl daughter minerals. The temperature corresponding to the disappearance of NaCl daughter minerals was looked up from a table in Lu et al. (2004). The salinity was determined as 28.59–6 4.47% NaCleqv according to that table. The freezing method by Hall et al. (1988) was employed to determine the scope of freezing temperature. Salinity was calculated as

\[W = 0.00 + 1.78T_{m(\text{ice})} + 0.0442T_{m(\text{ice})} + 0.000557T_{m(\text{ice})}^3 \]

Thus, the salinities of types V (vapor or gas) and L (liquid) inclusions containing no halite daughter minerals were obtained. The liquid- and gas-phase components of fluid inclusions were analyzed by the Analytical Laboratory of the CNNC Beijing Research Institute of Uranium Geology. The liquid-phase components were measured using DIONEX-500 Ion Chromatograph (serial number 6319, relative humidity 35%, temperature 22 °C). The gas-phase components were analyzed by thermal conductivity detector (TCD, PE.Clarus600), with the flow rate of carrier gas being 25 ml/min, pressure of carrier gas (Ar2) 100 KPa and the room temperature of 25 °C. The decrepitation temperature was 550 °C and the decrepitation time was 5 min.

4.2. Petrographic analysis of fluid inclusions

The fluid inclusions studied have developed in the stages of ore-forming process from magmatic to dry skarn and wet skarn stage and finally to the sulfide-bearing hydrothermal quartz stage. Therefore, the types of fluid inclusions studied also differed with the ore-forming stages.

- **Primary fluid inclusions** were mainly studied. They exhibit various morphologies such as negative crystal, oval, rhombic, square, rectangular, trap-qzuoidal, triangular and irregular. Their sizes vary in the range of 5–20 μm. Considering the phase of fluid inclusions and the transparent daughter minerals in fluid inclusions at room temperature (An, 2010), the fluid inclusions in the Saishitang ore field can be divided into four types:

1. **Melt inclusions** (type G + W): They are composed of glass (Gl), gas bubble (G), crystalline aggregate (devitrification products) with or without one or more daughter minerals (Fig. 4a, b). They are...
dominantly ellipsoidal and irregularly shaped, with sizes varying in the range of 10–15 μm. The gas fraction is 5–10%. With increasing temperature during heating, these inclusions became increasingly transparent and the salt minerals disappeared first. However, this type of inclusions has high homogenization temperatures (Roedder, 1992, 1994; Touret and Frezzotti, 1993), and so the glass component did not melt at the highest testing temperature of 600 °C. Although homogenization temperature was not reached, these inclusions record immiscible silicate melts and high-salt liquid trapped in the magmatic stage (Lu et al., 2004). They represent the magmatic fluid during magmatic differentiation (Lu, 1990b; Hou et al., 2013).

(2) Inclusions containing aqueous liquid of daughter minerals (type H): The sizes of this type of fluid inclusion are always <10 μm. They have amygdaloidal and columnar shapes. They contain aqueous liquid with salinity >28.59% (type W) and with one or more daughter minerals. The transparent daughter minerals are cubic and were considered as halite (Fig. 4c, d). The gas fraction was 5–40%. The gas bubbles disappeared first upon heating and then the minerals disappeared with homogenization to liquid phase for the most part. Few of the inclusions homogenized to gas phase.

(3) Gas fluid inclusions (V): Their sizes vary in the range of 5–10 μm. They have amygdaloidal and columnar shapes. They are composed of
liquid and gas phases, with the latter being dominant and reaching >50%. They homogenized to gas phase upon heating (Fig. 4e, f).

(4) Liquid fluid inclusions (L): These are dominated by liquid-rich low-salinity brine inclusions of various sizes (5–30 μm), various shapes (irregular, amygdaoidal and columnar) and with a range of vapor–liquid ratios (10–50%). They homogenized to liquid phase upon heating (Fig. 4g, h).

In quartz diorite closely related to skarn, amphiboles, quartz phenocrysts, ordinary quartz and epidotes all contain fluid inclusions. Amphiboles mainly have melt inclusions (G + W). Quartz phenocrysts have developed daughter mineral inclusions (type H), gas inclusions (type V) and fluid inclusions (type L), with a few melt inclusions. Ordinary quartz has two-phase gas–liquid aqueous inclusions (V + L). Fluid inclusions (type L) in epidotes are mainly developed in late alteration stage. In the samples of skarn stage (I), garnets, clinopyroxenes and vesuvianites are the representative minerals with fluid inclusions. Garnets have types H, V and L inclusions. Clinopyroxenes and vesuvianites have types H and type L inclusions. From samples of massive skarn-type copper ore belonging to the quartz–sulfide stage (II-1), fluid inclusions (types H, V and L) in quartz were chosen for the research. Quartz, fluorite and diopside are developed in skarn-type copper ore (stage II-2), and contain dominant fluid (type L) inclusions. Type L fluid inclusions are developed in quartz in late quartz–sulfide stage (III). Judging from the minerals with fluid inclusions, G + W and type H inclusions formed in an earlier period, types V and L formed in a later period.

4.3. Homogenization temperature and salinity of inclusions

The homogenization temperatures and salinities of each type of fluid inclusions from the Saishitang ore field are shown in Table 1. Melt (G + W) inclusions in quartz diorite from this ore field have homogenization temperatures with an upper bound of >600 °C and salinities of 39.43–40.61% NaCl._{eq}. Type H inclusions have homogenization temperatures of 402–534 °C, and a few inclusions have >600 °C, and their salinities vary in the range of 38.63–64.47% NaCl._{eq}. Type V inclusions have homogenization temperatures of 216–308 °C. Type L inclusions representing the late alteration stage have homogenization temperatures of 146–329 °C, mainly in the interval of 240–300 °C (Fig. 5a), with salinities of 3.87–6.30% NaCl._{eq}. In skarn stage (I), type H inclusions have complete homogenization temperatures in a wide range of 349–600 °C with salinities of 31.87–61.27% NaCl._{eq}. Only one type V inclusion was found, and it has a homogenization temperature of >600 °C. Type L inclusions have the lowest homogenization temperatures, which are 264–375 °C, and their salinities are 9.86–12.51% NaCl._{eq}.

In the massive sulfide stage (II-1), type H inclusions have homogenization temperatures of 205–341 °C and salinities of 28.59–41.58% NaCl._{eq}. Only two type V inclusions were found, and their homogenization temperatures are 358 °C and 360 °C. Type L inclusions have homogenization temperatures of 262–358 °C and salinities of 17.87–21.11% NaCl._{eq}. In the layered copper ore stage (II-2), only type L inclusions...
were found, and they have homogenization temperatures of 186–385 °C and salinities of 1.05–6.74 NaCl\text{equiv}.

In the late sulfide-bearing quartz–carbonate vein stage (III), one type V inclusions has homogenization temperature of 436 °C, and some type L inclusions have homogenization temperatures of 141–358 °C. Their corresponding salinities are 1.74% NaCl\text{equiv} and 1.57–4.34% NaCl\text{equiv}, respectively.

As shown from the histogram of homogenization temperatures (Fig. 5) and Table 1, homogenization temperatures and salinities of fluid inclusions decreased with the stages. The homogenization temperatures of fluid inclusions in quartz diorite, skarn stage and late hydrothermal stage demonstrate a good correspondence relationship. Homogenization temperatures of G + W inclusions and type H inclusions in quartz diorite are comparable to those of type H inclusions in stage I. Homogenization temperatures of type V inclusions in quartz diorite are comparable to those in stage II-1. Homogenization temperatures of type L inclusions in quartz diorite are comparable to those in stages II-2 and III.

4.4. Inclusion density, pressure and mineralization depth

The empirical equation \(p = a + bT_h + cT_h^2 \), where \(a, b and c \) are dimensionless parameters, converted from salinity, derived by Liu and Duan (1987); Liu and Shen (1999); Liu (2001) was used to calculate the density of type H, V and L inclusions. By referring to the P–T phase diagram of NaCl–H\(_2\)O system (Bodnar and Vityk, 1994), the pressures (homogenization pressure) of ore-forming fluids in each stage were obtained. The silicate melt in the melt inclusions has a very small compressibility, and the effect of pressure on trapping temperature is far smaller than the measurement error of homogenization temperature (Lu, 1990b). Thus, it was very difficult to obtain the pressure of melt inclusions. However, using the fluid inclusions coexisting but not immiscible with the melt inclusions, the same empirical formula used for type H, V and L inclusions \(p = P_0T_h/T_0 \) (where \(P_0 = 219 + 26.20w \), \(T_0 = 374 + 9.20w \) (Shao, 1990) was used to calculate the pressure values of melt inclusions (Hou et al., 2013).

As shown in Table 1, the densities of types G + W, H, V and L inclusions are 1.11–1.30 g/cm\(^3\), 0.52–1.24 g/cm\(^3\), 0.75–0.89 g/cm\(^3\) and 0.75–1.35 g/cm\(^3\), respectively. The corresponding pressures are 3.12–8.90 MPa, 2.70–5.71 MPa, 0.21–0.93 MPa and 0.12–1.11 MPa, respectively. For the skarn stage (I), densities of types H and L inclusions are 0.83–1.30 g/cm\(^3\) and 0.71–0.79 g/cm\(^3\), respectively. The corresponding pressures are 2.63–5.83 MPa and 1.23–2.04 MPa, respectively. For the massive sulfide stage (II–1), densities of types H and L inclusions are 1.00–1.14 g/cm\(^3\) and 0.85–1.09 g/cm\(^3\), respectively. The corresponding pressures are 0.29–8.74 MPa and 0.02–1.53 MPa, respectively, suggesting a wide variation range of pressures and the phenomenon of decompression. For the layered sulfide stage (II–2), densities of type L inclusions are 0.78–0.89 g/cm\(^3\), corresponding to pressures of 0.11–1.00 MPa. For the late sulfide-bearing quartz–calcite vein stage (III), densities are 0.61–0.94 g/cm\(^3\), corresponding to the lowest pressures of 0.04–0.47 MPa.
Fig. 5. Homogenization temperatures of fluid inclusions from Saishitang copper deposit. a — Quartz diorite period; b — skarn stage (I), quartz sulfide stage (II; massive sulfide stage (II-1), layered sulfide stage (II-2)) and polymetallic sulfide-bearing quartz–calcite vein stage (III) (The data points from different mineralization periods).
The mineralization depth of fluid was estimated from the calculated trapping pressures of fluid inclusions. Given the temperature and salinity of a boiling inclusion assemblage, the pressure during the formation of ore deposits could be estimated precisely (Roedder and Bodnar, 1980). For the massive sulfide stage of wet skarn (stage II–1), fluid boiling is highly probable (Fig. 3i, j) as indicated by alternating lithostatic and hydrostatic pressures of fluid (Li et al., 2007). The solubility curve of NaCl in saturated gas of the H₂O–NaCl system and the Pressure–Volume–Temperature–position (PVTx) data of liquid–gas interface were obtained by experiments and theory. The composition and trapping pressure were obtained with reasonable precision and accuracy through the study of fluid inclusions (1) where the daughter minerals disappeared first and gas bubbles disappeared next and (2) where the daughter minerals and gas bubbles disappeared simultaneously (Tm = Th). For fluid inclusions (3) where the gas bubbles disappeared first and the daughter minerals disappeared next (Tm > Th), there was a lack of liquidus line of NaCl and the PVTx data of the liquid–NaCl stability region fall outside the 40 wt.% NaCl system. Therefore, it was impossible to estimate reliably the composition and homogenization pressure of inclusions according to micro-thermometric data (Zhang et al., 2011). Thus, the pressure values of inclusions (3) were not used for the calculation of mineralization depth. Instead, the pressures of inclusions (1) and (2) trapped in the same mineral were used to calculate the paleodepth of trapping.

According to the calculation, type G + W inclusions and types H and W inclusions have strongly different pressures. This was considered as the indicator of the lithostatic or hydrostatic state of the ore-forming fluids (Hou et al., 2013). The high-pressure inclusions were treated as belonging to lithostatic system while the low-pressure inclusions as fluid belonging to hydrostatic system. These inclusions correspond to different fluid types at different stages of ore-forming process. The magmatic fluid was subject to lithostatic pressure while the ordinary fluid to hydrostatic pressure. The general expression of the relationship between pressure and depth is P = Hρg. When under lithostatic pressure, the value of ρ was taken as the average rock density of mainland China, which is 2.7 g/cm³; when under hydrostatic pressure, the value of ρ was calculated separately for each type of inclusion. Thus, the calculated paleodepths of trapping are as follows: depth of quartz diorite intrusion 4.2–10.0 km; depth at stage I 4.2–10.5 km; depth at stage II–1 3.1–9.8 km; depth at stage II–2 1.2–6.4 km; depth at stage III 0.3–6.0 km. Therefore, the mineralization depth of the ore deposit was a medium level.

4.5. Inclusion composition

In the ore-forming fluid (Table 2), the main cations are Na⁺ and Ca²⁺, while the contents of K⁺ and Mg²⁺ are very low. The variation range of X(Na⁺)/X(K⁺) was 2.80–23.76. Except 125ST09–1, in which NO₃⁻ and SO₄²⁻ have highest concentrations (39.6 × 10⁻⁶ and 16.22 × 10⁻⁶, respectively), all the samples have SO₄²⁻ and Cl⁻ with the highest concentrations. The content of NO₃⁻ was the lowest. Thus, the ore-forming fluid primarily belong to the Na⁺–Ca²⁺–SO₄²⁻–Cl⁻ system, and only a few samples belong to the Na⁺–Ca²⁺–NO₃⁻–SO₄²⁻ system. For the gas phase composition (Table 3), different compositions showed a relationship as follows: H₂O > CO₂ > H₂ > N₂ > CO > CH₄. Fig. 6 shows the variation in the gas phase composition of ore-forming fluid. Except that CO₂ has a linear relationship with gas-phase H₂O (R² = 0.7442), H₂, N₂, CO and CH₄ have a poor linear relationship with gas-phase H₂O (R² < 0.3).

5. Geochemical analysis of stable isotopes

5.1. Hydrogen and oxygen isotopes

Isotopes in ore-forming fluids of different origins differ significantly (White, 1974). Skarn garnet is the main ore type in the Saishitang ore field. Garnet is one of the rock-forming minerals with the highest stability and the lowest oxygen diffusion rate. Its oxygen isotopic composition can be hardly changed by hydrothermal alteration (Wu et al., 2005). Therefore, garnet can be used as an indicator of the oxygen isotopic composition of crystallizing medium (Wang et al., 2008). The specific sampling locations are shown in Fig. 2b and the hydrogen and oxygen isotopic compositions of fluid inclusions from the Saishitang ore field at the different stages of ore-forming process are shown in Table 4. The hydrogen isotopic (δD) in liquid contained in the fluid inclusions from different minerals was tested. Meanwhile, the oxygen isotope (δ¹⁸O–SMOW) was tested in quartz, garnet, diopside and tremolite.

The values of δ¹⁸O–SMOW of samples from the different stages of ore-forming process vary in the range of –125.9 to –89.9‰, –130.7 to –132.8‰, –139.9 to –161.2‰ and –105.4 to –89.6‰, respectively. Thus, there was a decrease in δ¹⁸O–SMOW from rock mass to the skarn stage (I) and to the quartz–sulfide stage (II), but the δ¹⁸O–SMOW increased from the quartz–sulfide stage (II) to the sulfide stage (III). The values δ¹⁸O–SMOW of samples from the three metallogenic stages are 12.4–16.9‰ (stage I), 9.8–18.1‰ (stage II–1), 8.3–10.2‰ (stage II–2) and 13.8–14.1‰ (stage III), respectively. The equation for oxygen isotope equilibrium fractionation between minerals and water (Clayton et al., 1972; Lu and Yang, 1982; Zheng et al., 2000) was used for the correction of homogenization temperature of ore-forming fluid. According to the calculations (Table 4), the values of δ¹⁸O–H₂O were 5.240–10.401‰ (stage I), 10.956–15.241‰ (stage II–1), 7.650–11.127‰ (stage II–2) and 2.562–2.862‰ (stage III). The variation range of the first three stages was consistent, while the value of stage III declined.

5.2. Sulfur isotopes

The specific sampling locations were shown in Fig. 2b and the sulfur isotopes of sulfides from five samples in the Saishitang ore field were analyzed and are listed in Table 5. Sulfur isotopes for the main mineralization stage of the Saishitang copper deposit have also been studied by Lai et al. (2010) and Li et al. (1993). The sulfur isotopes in our five sulfide samples and those in the previous studies (Lai et al., 2010; Li et al., 1993).

Table 2

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>F⁻</th>
<th>Cl⁻</th>
<th>NO₃⁻</th>
<th>SO₄²⁻</th>
<th>Na⁺</th>
<th>K⁺</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Cl⁻</th>
<th>K⁺</th>
<th>Na⁺</th>
<th>K⁺</th>
<th>F⁻ / Cl⁻</th>
<th>X(Cl⁻)/X(SO₄²⁻)</th>
<th>X(Na⁺)/X(Ca²⁺ + Mg²⁺)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125ST09–1</td>
<td>1.46</td>
<td>3.515</td>
<td>39.6</td>
<td>16.22</td>
<td>8.779</td>
<td>2.64</td>
<td>0.4071</td>
<td>9.351</td>
<td>60.795</td>
<td>21.1771</td>
<td>3.33</td>
<td>0.54</td>
<td>0.217</td>
<td>0.899</td>
<td></td>
</tr>
<tr>
<td>125ST27</td>
<td>0.6943</td>
<td>14.77</td>
<td>0.0753</td>
<td>69.58</td>
<td>14.06</td>
<td>3.124</td>
<td>2.881</td>
<td>11.48</td>
<td>85.1196</td>
<td>31.745</td>
<td>4.23</td>
<td>0.05</td>
<td>0.212</td>
<td>0.979</td>
<td></td>
</tr>
<tr>
<td>125ST15</td>
<td>0.2611</td>
<td>7.893</td>
<td>2.889</td>
<td>67.98</td>
<td>18.24</td>
<td>6.521</td>
<td>5.002</td>
<td>21.15</td>
<td>79.0231</td>
<td>51.003</td>
<td>2.80</td>
<td>0.03</td>
<td>0.116</td>
<td>0.695</td>
<td></td>
</tr>
<tr>
<td>125ST09–2</td>
<td>1.049</td>
<td>5.15</td>
<td>0.1171</td>
<td>7.342</td>
<td>6.576</td>
<td>0.536</td>
<td>0.0871</td>
<td>0.9428</td>
<td>13.6581</td>
<td>8.1419</td>
<td>12.27</td>
<td>0.20</td>
<td>0.701</td>
<td>6.385</td>
<td></td>
</tr>
<tr>
<td>125ST17</td>
<td>0.5363</td>
<td>10.28</td>
<td>0.133</td>
<td>62.73</td>
<td>13.63</td>
<td>2.154</td>
<td>6.866</td>
<td>34.98</td>
<td>73.6793</td>
<td>56.73</td>
<td>6.33</td>
<td>0.05</td>
<td>0.164</td>
<td>0.326</td>
<td></td>
</tr>
<tr>
<td>125ST23</td>
<td>1.109</td>
<td>5.017</td>
<td>4.044</td>
<td>20.15</td>
<td>9.575</td>
<td>0.402</td>
<td>1.153</td>
<td>1.973</td>
<td>30.32</td>
<td>13.104</td>
<td>23.76</td>
<td>0.22</td>
<td>0.249</td>
<td>3.06</td>
<td></td>
</tr>
<tr>
<td>125ST20</td>
<td>3.021</td>
<td>13.82</td>
<td>0.0475</td>
<td>25.44</td>
<td>16.87</td>
<td>0.7514</td>
<td>0.092</td>
<td>1.595</td>
<td>46.3285</td>
<td>15.3084</td>
<td>22.45</td>
<td>0.21</td>
<td>0.469</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

* Not measured data.
show that the δ34S values of 24 samples of pyrrhotite are −2.1 to −4.66‰, with an average of 0.03‰ and a standard deviation of 1.65‰; the δ34S values of 28 pyrite samples are −6.45−4.11‰, with an average of −0.546‰ and a standard deviation of 2.23‰; the δ34S values of eight chalcopyrite samples are −2.58−2.16‰, with an average of −0.148‰ and a standard deviation of 1.69‰; the δ34S values of four sphalerite samples are −7.47−5.57‰, with an average of −3.063‰ and a standard deviation of 3.41‰; the δ34S values of five galena samples are −4.85−5.57‰, with an average of −2.138‰ and a standard deviation of 4.46‰; and the δ34S value of one arsenopyrite sample was 0.59‰.

Determination of the source of sulfur in ore-forming fluid should be based on the total sulfur isotopic composition of sulfide (δ34SΣS) in hydrothermal fluid in the sedimentary stage. The mineral assemblages containing sulfur but not sulfate in the Saishitang ore field were pyrrhotite, pyrite, chalcopyrite, sphalerite and galena. The dissolved sulfur was mainly in the form of H2S. Thus, the average δ34S value of sulfides, especially pyrite, can roughly reflect the total sulfur isotopic composition δ34SΣS of the hydrothermal fluid (Ohmoto, 1972; Liu et al., 2007).

Table 3
Gaseous phase composition (×10−6) of fluid inclusions from the Saishitang copper deposit.

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Mineral</th>
<th>H2</th>
<th>N2</th>
<th>CO</th>
<th>CH4</th>
<th>CO2</th>
<th>H2O (gas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12SST09-1</td>
<td>Quartz</td>
<td>0.0868</td>
<td>0.3921</td>
<td>0.5577</td>
<td>0.0451</td>
<td>2.695</td>
<td>4.168 × 10⁵</td>
</tr>
<tr>
<td>12SST27</td>
<td>Quartz</td>
<td>0.3876</td>
<td>1.836</td>
<td>0.0907</td>
<td>0.0781</td>
<td>0.7431</td>
<td>2.964 × 10⁵</td>
</tr>
<tr>
<td>12SST15</td>
<td>Quartz</td>
<td>0.2378</td>
<td>0.2577</td>
<td>0.185</td>
<td>0.1752</td>
<td>3.315</td>
<td>1.575 × 10⁵</td>
</tr>
<tr>
<td>12SST09-2</td>
<td>Quartz</td>
<td>0.2304</td>
<td>0.1164</td>
<td>0.1209</td>
<td>0.2255</td>
<td>0.3062</td>
<td>3.120 × 10⁵</td>
</tr>
<tr>
<td>12SST17</td>
<td>Garnet</td>
<td>2.488</td>
<td>0.1266</td>
<td>0.1863</td>
<td>0.2656</td>
<td>2.651</td>
<td>2.296 × 10⁵</td>
</tr>
<tr>
<td>12SST26</td>
<td>Garnet</td>
<td>0.1101</td>
<td>0.2923</td>
<td>0.127</td>
<td>0.0105</td>
<td>0.6647</td>
<td>0.9678 × 10⁵</td>
</tr>
<tr>
<td>12SST25</td>
<td>Quartz</td>
<td>0.0443</td>
<td>0.1895</td>
<td>0.1009</td>
<td>0.3675</td>
<td>1.236</td>
<td>1.053 × 10⁵</td>
</tr>
<tr>
<td>12SST24</td>
<td>Quartz</td>
<td>0.0821</td>
<td>0.2193</td>
<td>0.0785</td>
<td>0.1873</td>
<td>0.5603</td>
<td>2.239 × 10⁵</td>
</tr>
<tr>
<td>12SST20</td>
<td>Quartz</td>
<td>0.4525</td>
<td>0.6523</td>
<td>0.2028</td>
<td>0.2386</td>
<td>0.8349</td>
<td>1.071 × 10⁵</td>
</tr>
</tbody>
</table>

Fig. 6. Covariation diagrams of gas composition CO2, N2, CO, CH4, H2 and H2O in the Saishitang copper deposit.
Hydrogen and oxygen (‰) of the fluid inclusions in Saishitang copper deposit.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Sample no.</th>
<th>Mineral</th>
<th>δ18O-water</th>
<th>δD-water</th>
<th>t°C</th>
<th>δ18O-H2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Quartz diorite</td>
<td>12SST09-1</td>
<td>Quartz</td>
<td>−102.4</td>
<td>15.7</td>
<td>278.16</td>
<td>7.979</td>
</tr>
<tr>
<td></td>
<td>12SST20</td>
<td>Quartz</td>
<td>−107.1</td>
<td>16.3</td>
<td>329.74</td>
<td>10.401</td>
</tr>
<tr>
<td></td>
<td>12SST15</td>
<td>Quartz</td>
<td>−89</td>
<td>16.9</td>
<td>224.87</td>
<td>6.672</td>
</tr>
<tr>
<td></td>
<td>12SST27</td>
<td>Quartz</td>
<td>−109.6</td>
<td>12.4</td>
<td>406.22</td>
<td>8.477</td>
</tr>
<tr>
<td></td>
<td>12SST09-2</td>
<td>Quartz</td>
<td>−118.2</td>
<td>16.4</td>
<td>208.67</td>
<td>5.240</td>
</tr>
<tr>
<td></td>
<td>12SST16</td>
<td>Quartz</td>
<td>−125.9</td>
<td>16.6</td>
<td>224.87</td>
<td>6.372</td>
</tr>
<tr>
<td></td>
<td>12SST26</td>
<td>Garnet</td>
<td>−130.4</td>
<td>11.7</td>
<td>396.2</td>
<td>12.856</td>
</tr>
<tr>
<td>I Skarn</td>
<td>12SST17</td>
<td>Garnet</td>
<td>−132.8</td>
<td>10.2</td>
<td>368</td>
<td>11.127</td>
</tr>
<tr>
<td>II Quartz sulfide</td>
<td>12SST28</td>
<td>Quartz</td>
<td>−130.7</td>
<td>18.1</td>
<td>461.72</td>
<td>15.241</td>
</tr>
<tr>
<td></td>
<td>12SST23</td>
<td>Garnet</td>
<td>−113.2</td>
<td>9.8</td>
<td>396.2</td>
<td>10.956</td>
</tr>
<tr>
<td></td>
<td>12SST24</td>
<td>Diopside</td>
<td>−161.2</td>
<td>9.3</td>
<td>263.16</td>
<td>9.350</td>
</tr>
<tr>
<td></td>
<td>12SST25</td>
<td>Diopside</td>
<td>−139.9</td>
<td>10.2</td>
<td>368</td>
<td>11.127</td>
</tr>
<tr>
<td>III Polymetallic sulfide-bearing quartz–calcite vein</td>
<td>12SST18</td>
<td>Tremolite</td>
<td>−152.7</td>
<td>8.3</td>
<td>236.47</td>
<td>7.708</td>
</tr>
<tr>
<td></td>
<td>12SST17</td>
<td>Diopside</td>
<td>−139.9</td>
<td>10.2</td>
<td>368</td>
<td>11.127</td>
</tr>
<tr>
<td></td>
<td>12SST24</td>
<td>Quartz</td>
<td>−89.6</td>
<td>13.8</td>
<td>207.38</td>
<td>2.562</td>
</tr>
<tr>
<td></td>
<td>12SST25</td>
<td>Quartz</td>
<td>−105.4</td>
<td>14.1</td>
<td>207.38</td>
<td>2.862</td>
</tr>
</tbody>
</table>

Note: δ18O-H2O are calculated values. Quartz–Water: 1000 ln = δ18Owater−δ18O-H2O = 3.38 × 10T−2−3.74 (Clayton et al., 1972); Garnet–Water: 1000 ln = 1.14 × 10T−2−3.70 (Lu and Yang, 1982); Tremolite–Water: 1000 ln = 3.92 × 10T−8.28−10T−1 + 2.38 (Zheng et al., 2000); Diopside–Water: 1000 ln = 3.92 × 10T−8.43−10T−1 + 2.04 (Zheng et al., 2000); t°C: complete homogenization temperature.

6. Discussion

6.1. Origin and evolution of ore-forming fluid

Fluid inclusions and ore-forming fluid have long been the important aspects of research on mineral deposits (e.g., Deng et al., 2001, 2003, 2011; Liu et al., 2011; Cao et al., 2012; Li et al., 2014; Liu et al., 2000, 2007, 2015a). In the Saishitang ore field, a large number of melt inclusions are detected in porphyritic quartz of magmatic stage and the garnet of skarn stage which are evidence of existence of magmatic water (e.g., Lu et al., 2004). The coexistence of melt inclusions and fluid inclusions in this ore field is the indication of magmatic immiscibility. It can be inferred that, in the early mineralization stage, magmatic fluid has a close relationship with the genesis of ore-forming fluid with medium to high temperature and high salinity.

Roedder (1971) found that molar ratios of liquid-phase components of fluid inclusions as X(Na+)/X(K+)<2 and X(Na+)/X(Ca2+ + Mg2+)>4 indicate either magma or metamorphic hydrothermal fluid, whereas molar ratios of X(Na+)/X(K+) > 2 and X(Na+)/X(Ca2+ + Mg2+)<1.5 indicate hot brine or formation water. For the rock mass in the Saishitang ore field, the ranges of measured X(Na+)/X(K+) ratios and X(Na+)/X(Ca2+ + Mg2+) ratios are 2.80~12.27 and 0.695~6.385, respectively, indicating mixture of magmatic and formation water. However, for inclusions at dry-wet skarn (stages I and II), the ranges of measured X(Na+)/X(K+) ratio and X(Na+)/X(Ca2+ + Mg2+) ratio are 1.30~6.33 and 0.404~0.979, respectively, indicating formation water. For stage III and the late hydrothermal alteration stage, the measured X(Na+)/X(K+) ratios are 23.76 and 22.45 and the measured X(Na+)/X(Ca2+ + Mg2+) ratios are 3.06 and 10, indicating mixture of magmatic and formation water. A small X(F)/X(Cl) ratio usually indicates genesis related to underground hot brine or atmospheric precipitation (Lu et al., 1990). In the Saishitang ore field, the measured X(F)/X(Cl) ratio is 0.05~0.42, indicating genesis related to formation water. The SO2−4 in solution represents all sulfur-bearing phases in fluid inclusions, such as S2−, HS− and SO42− (Chen et al., 2004). The intrusion of diorite porphyry may introduce a large concentration of SO2−4 (Fan et al., 2010). Moreover, the high SO42− concentration in the ore-forming fluid is also evidence of the existence of magmatic hydrothermal fluid (Jiang et al., 1994). In the Saishitang ore field, the content of SO2−4 was high at all stages (7.342~76.369), indicating genesis related to magmatic water. Thus, magmatic and formation water coexist in this ore field.

The variation of gas-phase components of ore-forming fluid (Fig. 6) shows that only CO2 had a good linear relationship with gas-phase H2O (K2 = 0.7442) whereas H2, N2, CO and CH4 had a poor linear relationship with gas-phase H2O (K2 ~ 0.3). If the good linear relationship between CO2 and H2O was caused by phase separation, then the same process would govern the relationship between other gases and H2O. During phase separation, these gases are fractionated into gas phase along with CO2, which can result in consistent variations of each gas-phase component and H2O. This means a high degree of linear fitting (Li and Liu, 2002; Liu et al., 2003; Li et al., 2013). In addition, if the mixed magmatic and formation fluids both contained CO2, it could be a reason of good linear relationship between CO2 and gas-phase H2O. However, Fig. 6 shows that each gas-phase component in ore-forming fluid was not formed by separation of the same phase. Instead, external fluid was mixed with the ore-forming fluid during migration, leading to the introduction of gas-phase components at different proportions.

In general, the earth surface system (especially the atmosphere) is enriched with N2 and Ar compared with the earth interior. Therefore, surface atmospheric precipitation and basinal hot brine may have higher N2 and Ar content compared with deep magma or metamorphic water (Chen et al., 2001; Zhang et al., 2007). Deep magmatic water has low content of N2 and Ar, with X(N2)/X(Ar) ratio generally larger than 200 (Norman and Musgrave, 1994; Norman et al., 1996). In the Saishitang ore field, a very low N2 content was detected (0.1164×10−6~0.4219×10−6), and no argon gas was found, indicating deep source of magmatic water.

As seen from the δd−δ18O-H2O plot (Fig. 7), the obtained data for each stage of ore-forming process all fall within the range of existence of formation water below the primary magmatic water. The rock mass samples resemble the primary magmatic water on the δd−δ18O-H2O plot. Most of them belong to the initial mixed magmatic water proposed by Zhang (1985). It is indicated that the ore-forming fluid at this stage may have been already mixed with hydrothermal fluid with low δd values, resulting in the reduction of δd values. However, the δd values of stages I and II gradually decreased while the δ18O-H2O values increased slightly. This suggests that the mixed hydrothermal fluid has low δd values and high δ18O-H2O values. The samples at stage III fall on the left of the initial mixed magmatic water, indicating a shift towards the meteoric water line.

In addition, samples of quartz diorite and stages I and II-1 all have fluid inclusions with high homogeneous temperatures and high

Table 4
Sulfur isotope composition of ore sulfides from the Saishitang copper deposit.

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Determination of mineral</th>
<th>δ34S-CDT(‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12SST05</td>
<td>Pyrite</td>
<td>−1.2</td>
</tr>
<tr>
<td>12SST11</td>
<td>Pyrite</td>
<td>−3.2</td>
</tr>
<tr>
<td>12SST12</td>
<td>Pyrite</td>
<td>−3.2</td>
</tr>
<tr>
<td>12SST24</td>
<td>Chalcopyrite</td>
<td>0.4</td>
</tr>
<tr>
<td>12SST25</td>
<td>Chalcopyrite</td>
<td>1.2</td>
</tr>
</tbody>
</table>
salinities indicating the existence of magmatic fluid. Therefore, the Saishitang ore field has both magmatic fluid and formation water (probably as hot brine). Along with the process of fluid evolution, the temperature of ore-forming fluid gradually decreased, with an increased proportion of formation water mixed into the ore-forming fluid. As a result, the types of fluid inclusions of the main metallogenic stage (stage II-1) changed significantly, from type G + W inclusions representing magmatic hydrothermal fluid to the coexistence of types H and W inclusions.

6.2. Source of metallogenic materials

The results of previous Pb isotope studies (Zhu et al., 2012; Li et al., 2009) of ores from the main mineralization stage of the Saishitang ore field indicated a strong homogeneity of Pb isotopes: $^{208}\text{Pb}/^{204}\text{Pb} = 37.943–38.672$, with average of 38.249; $^{207}\text{Pb}/^{204}\text{Pb} = 15.442–15.721$, with average of 15.563; $^{206}\text{Pb}/^{204}\text{Pb} = 17.901–19.108$, with average of 18.373. Their μ values also had strong homogeneity (9.18–9.7), with average of 9.396. These features indicate that the Pb isotopic composition of fluids in the Saishitang ore field is strongly homogeneous.

The coexistence of magmatic fluid and formation water is proved in the main metallogenic stage of the ore field. However, stable isotope evidence is still needed to determine the source of metallogenic materials. The $\delta^{34}\text{S}$ values of sulfides in the ore field are concentrated in the interval of -6.45 to -5.57‰, with average of -0.546‰. As seen from the histogram of sulfur isotopic composition (Fig. 8), the $\delta^{34}\text{S}$ values are mainly distributed near zero with a peak occurring around -2.0 to -1.0‰. This $\delta^{34}\text{S}$ data distribution pattern reflects the characteristics of magmatic sulfur (Ohmoto and Rye, 1979).

The Pb isotope diagram (Fig. 9) and $\Delta\gamma–\Delta\beta$ diagram (Fig. 10a) show that the metallogenic materials mainly originate from magmatic hydrothermal fluid related to crust–mantle mixing in an orogenic environment. On the $^{207}\text{Pb}/^{204}\text{Pb}$–$^{206}\text{Pb}/^{204}\text{Pb}$ diagram (Fig. 10b) for judging the tectonic setting of source region, most of the data fall on the lower crust, MORB and PREMA. It is inferred that the crust–mantle interaction related to metallogenic process occurred at the interface between the upper mantle and the lower crust.

The sulfur and lead isotope data suggest that the metallogenic materials have a close connection with magmatic fluid.

6.3. Metallogenic mechanism

The plot of homogenization temperature versus salinity of fluid inclusions can be used to determine the evolutionary trend of fluid (e.g., Zhai et al., 2012). The present study shows that there exists a positive correlation between homogenization temperature and salinity of fluid inclusions trapped in fluid mixing and between salinity and enthalpy. However, the correlation is negative for fluid inclusions trapped in the process of fluid boiling or phase separation (Shepherd et al., 1985). As shown by the fluid evolution diagram (Fig. 11), magmatic fluid is high-temperature and high-salinity fluid. Such fluid is mixed with low-temperature and low-salinity fluid at skarn stage (I). Three types of fluid inclusions coexist in the same host mineral at stage II-1 (sample 12SSST-12) with various modes of homogenization, similar homogenization temperatures.
and great differences in salinity. Due to the existence of boiling in-
cclusion assemblage (Fig. 4i, j), the trapped fluid is a saturated or su-
persaturated fluid that was boiling (Chen et al., 2010). With a
reduction in pressure at this stage, decompression boiling took
place.

The migration of metal ions such as Cu and Mo mainly occurs in the
form of complex. Under condition of high temperature and high pres-
sure, especially the critical or supercritical state, complexes have high

stability. As decompression boiling proceeds at stage II-1, several vola-
tile components such as CO2, H2O, CH4 and N2 escaped, resulting in the
increase of pH and fluid salinity. As temperature decreased, the
physical and chemical equilibrium of the original system was disrupted,
resulting in the deposition of metal sulfides (e.g., chalcopyrite, pyrite
and bornite) (Rui et al., 1984). Extensive studies (e.g., Zhang, 1997;
reed and Palandi, 2006; Wu et al., 2010; Gu et al., 2010; Wang et al.,
2011) have shown that boiling of hydrothermal fluid can significantly
alter the phase equilibrium of hydrothermal fluid. Phase changes facili-
tate decomposition of metal complexes in hydrothermal fluid, causing
precipitation of a large amount of metal sulfides and thus forming met-
tallic minerals. Decompression boiling of fluid occurred at the main
metallogenic stage (II-1), leading to changes of physical and chemical
conditions of pH, Eh, fO2 and fS2. Thus, metallic elements such as Cu in
the fluid no longer existed in the stable form of complex, and precipitat-
ed from the hydrothermal fluid.

The H–O isotope plot (Table 4, Fig. 7) shows that a larger amount of
formation water was involved at the skarn stage (II-2) because there was a significant reduction of temperature and salinity of inclusions
(Fig. 11b). Moreover, the minerals formed at this stage are located far away from the rock mass. There is the possibility that the mixing and in-
teraction of magmatic water and formation water helped to preserve
the products of the stratification of surrounding rock.

The Saishitang ore field is located at the transition zone between
two E–W-trending orogenic belts, i.e., the WQOB and the Eastern Kunlun orogenic belt. The joining and transition of the two orogenic belts
correspond to the formation of the Gonghe aulacogen and its
evolution with composite superimposition. It had basically experi-
enced the plate tectonic system of the Triassic or even earlier and
the intracontinental orogenic system since the Jurassic. The WQOB
was already connected with Eastern Kunlun Mountains (Li et al.,
2009). Moreover, the zircon U–Pb age of quartz diorite was 221.7–223.5 Ma (unpublished), suggesting close relationship with the Middle to Late Triassic magmatic activity of Western Qinling Mountains and Saishitang–Tongyugou belt.

7. Conclusions

(1) Hydrothermal activity in the Saishitang skarn-type copper ore
field can be divided into three stages: skarn stage (I), quartz–sulfide stage (II) and sulfide-bearing quartz–calcite vein stage (III). The quartz–sulfide stage can be subdivided into a massive sulfide stage (II-
1) and a layered sulfide stage (II-2).

(2) From the magmatic (quartz diorite) stage to each
metallogenic stage (I, II-1, II-2, III), the ore-forming fluid showed a
decreasing trend of homogenization temperature, salinity and density.

(3) The ore-forming fluid mainly belong to a Na+–Ca2+–
SO42−–Cl− system, and partly belong to a Na+–Ca2+–NO3−–SO42− sys-
tem, and was formed by mixing of magmatic and formation water.
As the fluid evolution proceeds, more formation water was mixed with
the ore-forming fluid, and there existed the mixing of atmo-
spheric precipitation at sulfide-bearing quartz vein stage. The mixing of
magmatic hydrothermal fluid and formation water led to the for-
mation of skarn.

(4) Petrographic and stable isotope analyses of fluid inclusions
inicate that the metallogenic materials have a close connection
with magmatic fluid.
Acknowledgments

We are particularly grateful to Prof. Hao Ziguo, Dr. Lu Yanming, and Dr. Qingmin, as well as the guest editor of this special issue for their helpful and constructive comments. This manuscript has benefitted significantly from constructive suggestions of Dr. Guo Xiaodong and Dr. Li Gongjian. We appreciate Zhu Huiyan and Liu Mu for their kind assistance with the temperature measurement of fluid inclusions and isotopic analyses. We also thank Liu Heng, Liu Henan and all the employees of Hydrological station of Tangnaihai Township for their generous help during the fieldwork. This study was jointly funded by the Geological Survey Project of China (Grant 1212011220924), the Geological Survey Projects of China Geological Survey (Grant 1212011220899), and the National Natural Science Foundation of China (Grant 41030423).

References

