The sum numbers and
the integral sum numbers of F_n and F_n

Haiying Wang1* Jingzhen Gao2†

1. The School of Information Engineering
China University of Geosciences (Beijing)
Beijing 100083, P.R. China
2. Department of Mathematics and Science
Shandong Normal University
Jinan, Shandong, 250014, P.R. China

Abstract Let $G = (V, E)$ be a simple graph with the vertex set V
and the edge set E. G is a sum graph if there exists a labelling f of
the vertices of G into distinct positive integers such that $uv \in E$
if and only if $f(w) = f(u) + f(v)$ for some vertex $w \in V$. Such a labelling f
is called a sum labelling of G. The sum number $\sigma(G)$ of G is the smallest
number of isolated vertices which result in a sum graph when added to G.
Similarly, the integral sum graph and the integral sum number $\zeta(G)$ are
also defined. The difference is that the labels may be any distinct integers.
In this paper, we will determine that

$$
\left\{ \begin{array}{l}
0 = \zeta(F_5) < \sigma(F_5) = 1; \\
1 = \zeta(F_6) < \sigma(F_6) = 2; \\
3 = \zeta(F_7) < \sigma(F_7) = 4; \\
\zeta(F_n) = \sigma(F_n) = 0, \ n = 1, 2, 3; \\
\zeta(F_n) = \sigma(F_n) = 2n - 7, \ n \geq 7.
\end{array} \right.
$$

and

$$
\left\{ \begin{array}{l}
0 = \zeta(F_5) < \sigma(F_6) = 1; \\
2 = \zeta(F_6) < \sigma(F_6) = 3; \\
\zeta(F_n) = \sigma(F_n) = 0, \ n = 3, 4; \\
\zeta(F_n) = \sigma(F_n) = 2n - 8, \ n \geq 7.
\end{array} \right.
$$

Keywords The sum graph; The integral sum graph; The sum
number; The integral sum number; Path; Fan.

*E-mail: whycht@126.com.
†This research is supported by 2008 Foundation of China University of Geosciences (Beijing)(NO.51900961144) and National Nature Science Foundation of China (NO.10671014).
1. Introduction

Let $G = (V, E)$ be a simple graph with the vertex set V and the edge set E. The complement \overline{G} of G with order n is the graph with the vertex set V and the edge set $E(K_n) - E$. A path P_n is a graph with the vertex set $\{a_1, a_2, ..., a_n\}$ and the edge set $\{a_1a_2, a_2a_3, ..., a_{n-1}a_n\}$, and a_1 and a_n are called the end vertices of P_n. A fan F_n is a graph with the vertex set $\{c, a_1, a_2, ..., a_n\}$ and the edge set $\{ca_1, ca_2, ..., ca_n\} \cup \{a_1a_2, a_2a_3, ..., a_{n-1}a_n\}$. It is obvious that $\overline{F_n} = \overline{P_n} \cup K_1$.

A sum graph and an integral sum graph were introduced by Frank Harary in [2] and [3]. G is a sum graph if there exists a labelling f of the vertices of G into distinct positive integers such that $uv \in E$ if and only if $f(w) = f(u) + f(v)$ for some vertex $w \in V$. Such a labelling f is called a sum labelling of G. A sum graph cannot be connected. There must always be at least one isolated vertex. The sum number $\sigma(G)$ of G is the smallest number of isolated vertices which result in a sum graph when added to G. Similarly, an integral sum graph and an integral sum number $\zeta(G)$ are also defined. The difference is that the labels may be any distinct integers. Obviously $\zeta(G) \leq \sigma(G)$.

A vertex w of G is working if its label corresponds to an edge uv of G. G is exclusive if none of the vertices in V is working. For example, K_n and W_{2n-1} are exclusive in [9].

To simplify the notations, we may assume that the vertices of G are identified with their labels throughout this paper. And let V_i and E_i denote the set of the vertices independent of a_i and the set of the edges adjacent to a_i in $\overline{P_n}$ respectively. Besides, some results have been obtained as follow.

Lemma 1 ([2]) $\sigma(P_n) = 1$ and $\zeta(P_n) = 0$ for $n \geq 2$.

Lemma 2 ([1][8]) $\zeta(K_n) = \sigma(K_n) = 2n - 3$ for $n \geq 4$.

Lemma 3 ([8]) $\zeta(C_n) = \zeta(W_n) = 0$ for $n \neq 5$.

Lemma 4 ([2]) For $n \geq 3$, $\sigma(C_n) = \begin{cases} 2, & n \neq 4, \\ 3, & n = 4. \end{cases}$

Lemma 5 ([10][7]) For $n \geq 3$, $\sigma(W_n) = \frac{n}{2} + 2$, n even,

n, n odd.

In this paper, we will determine the sum numbers and the integral sum numbers of $\overline{P_n}$ and $\overline{F_n}$ for $n \geq 1$.

2. Main results

Let $\overline{P_n} = (V, E)$ and $S = V \cup C$, where $V = \{a_1, a_2, ..., a_n\}$ and C is the isolated vertex set. It is clear that $\overline{P_2} = 2K_1$ and $\overline{P_3} = P_2 \cup K_1$ and $\overline{P_4} = P_3$. By Lemma 1 and Lemma 2, $\zeta(\overline{P_i}) = \sigma(\overline{P_i}) = 0$ for $i = 1, 2, 3$ and $0 = \zeta(\overline{P_i}) < \sigma(\overline{P_i}) = 1$. In this section, we only consider $n \geq 5$.

2
Lemma 2.1 \(\overline{P_n} \) is not an integral sum graph for \(n \geq 5 \).

Proof: Let \(|a_x| = \max\{|a| : a \in V\} \) and \(a_x \in V \). Assume that \(a_x > 0 \) (A similar argument work for \(a_x < 0 \)). By contradiction. If \(\overline{P_n} \) is an integral sum graph for \(n \geq 5 \) then \(0 \not\in V \) and \(a_x + a_i \in V \) for all \(a_x a_i \in E \). Then \(a_x + a_i > 0 \) and \(a_i < 0 \) according to the choice of \(a_x \). So we get at least \(n - 3 \) distinct positive vertices \(a_x + a_i \) in \(V \). Meanwhile, we also get at least \(n - 3 \) distinct negative vertices \(a_i \). So \(2(n - 3) + 1 \leq n \), that is, \(n \leq 5 \). Since \(n \geq 5 \), only \(n = 5 \).

Assume that \(V(\overline{P_5}) = \{a_x, a_1, a_2, a_x + a_1, a_x + a_2\} \) with \(a_i < 0 \) \((i = 1, 2) \). By the choice of \(a_x \), \((a_x + a_i)a_x \not\in E \) with \(i = 1, 2 \) and \(\overline{V_x} = \{a_x + a_1, a_x + a_2\} \) (see Figure 1). So \((a_x + a_1)(a_x + a_2) \in E \), that is, \((a_x + a_1) + (a_x + a_2) \in \{a_x, a_x + a_1, a_x + a_2\} \). Thus, \((a_x + a_1) + (a_x + a_2) = a_x \), that is, \(a_x + a_1 = -a_2 \) and \(a_x + a_2 = -a_1 \). So \((a_x + a_1)a_2 \not\in E \) and \((a_x + a_2)a_1 \not\in E \) and \(a_1 a_2 \not\in E \) (see Figure 1), contracting the structure of \(\overline{P_5} \).

Thus, Lemma 2.1 holds. \(\square \)

![Figure 1](image1.png)

Lemma 2.2 \(\zeta(\overline{P_5}) = 1 \).

Proof: By Lemma 2.1, \(\zeta(\overline{P_5}) \geq 1 \). Below we will give an integral sum labelling of \(\overline{P_5} \cup K_1 \) (see Figure 2). So \(\zeta(\overline{P_5}) \leq 1 \). Thus, \(\zeta(\overline{P_5}) = 1 \). \(\square \)

![Figure 2](image2.png)

3
Lemma 2.3 \(\sigma(P_5) = 2 \).

Proof: It is clear that the sum number of a graph must be at least as large as the minimum degree of the graph, so \(\sigma(P_5) \geq 2 \). Figure 3 below shows that \(\sigma(P_5) \leq 2 \). Thus, \(\sigma(P_5) = 2 \). \(\square \)

![Figure 3](image)

Lemma 2.4 If \(a_x \in V \) with \(|a_x| = \max\{|a| : a \in V\} \), then there exists one edge \(a_xa_j \in E \) such that \(a_x + a_j \in C \) for \(n \geq 6 \).

Proof: Let \(|a_x| = \max\{|a| : a \in V\} \) with \(a_x \in V \). Assume that \(a_x > 0 \) (A similar argument works for \(a_x < 0 \)). By contradiction. Suppose to the contrary that \(a_x + a_j \in V \) for all \(a_xa_j \in E \). According to the choice of \(a_x \), \(a_x + a_j > 0 \) and \(a_j < 0 \). Then there are at least \(n - 3 \) distinct positive vertices \(a_x + a_j \) and \(n - 3 \) distinct negative vertices adjacent to \(a_x \). So \((n - 3) + (n - 3) + 1 \leq n \), i.e., \(n \leq 5 \), contradicting the fact \(n \geq 6 \).

Thus, Lemma 2.4 holds. \(\square \)

Lemma 2.5 \(\zeta(P_6) = 3 \).

Proof: Below we give an integral sum labelling of \(P_6 \) (see Figure 4). So \(\zeta(P_6) \leq 3 \). What we need to do is only to prove \(\zeta(P_6) \geq 3 \).

![Figure 4](image)
Let $|a_x| = \max\{|a| : a \in V\}$ with $a_x \in V$. Assume that $a_x > 0$ (A similar argument works for $a_x < 0$). By Lemma 2.2, there exists one edge $a_x a_{j_0} \in E_x$ such that $a_x + a_{j_0} \in C$. Firstly, we will show Claim 1 and Claim 2 and Claim 3.

Claim 1: There exists another edge $a_x a_l \in E_x - a_x a_{j_0}$ such that $a_x + a_l \in C$.

By contradiction. Suppose to the contrary that $a_x + a_l \in V$ for all $a_x a_l \in E_x - a_x a_{j_0}$. By the choice of a_x, $a_x + a_l > 0$ and $a_l < 0$. Since $a_x + a_{j_0} \in C$, $(a_x + a_{j_0}) + a_l = (a_x + a_l) + a_{j_0} \notin S$. Then $a_x + a_l \in \{a_{j_0}\} \cup V_{j_0}$, denoted (1).

If a_x is an end vertex of P_6, then $|E_x| = 4$. So there are four distinct positive vertices and at least three distinct negative vertices in V. So $n > 6$, a contraction. So a_x is not an end vertex of P_6.

Let $V_x = \{a_{x+1}, a_{x-1}\}$ and $V = \{a_x, a_{x+1}, a_{x-1}, a_{j_0}, a_{i_1}, a_{i_2}\}$ (see Figure 5). Assume a_i, a_j are two end vertices of P_6. Then $a_i a_j \in E$ and $a_i + a_j \in S$.

![Figure 5](image)

If $V_{j_0} \subseteq \{a_{i_1}, a_{i_2}\}$ and $a_i a_j \in \{a_{x+1} a_{i_1}, a_{j_0} a_{i_2}, a_{i_2} a_{x-1}\}$ then we may assume that $a_i a_{j_0} \notin E$ (see Figure 6). By (1), $a_x + a_{i_1} = a_{j_0}$ and $a_x + a_{i_2} = a_{j_0}$, a contraction. So $V_{j_0} \subseteq \{a_{i_1}, a_{x+1}\}$.

![Figure 6](image)
By (1) and $a_{l_1} < 0$, $\{a_x + a_{l_1}, a_x + a_{l_2}\} = \{a_{j_0}, a_{x+1}\}$ and $a_{x+1}a_{j_0} \notin E$ (see Figure 7).

If $a_x + a_{l_1} = a_{x+1}$ and $a_x + a_{l_2} = a_{j_0}$ then $a_{l_1} + a_{j_0} = a_{x+1} + a_{l_2} \in S$. So $a_{l_1}a_{j_0} \in E$. Since $a_{x-1} + a_{j_0} = a_{x-1} + (a_x + a_{l_2}) = a_x + (a_{x-1} + a_{l_2}) \in S$, $a_{x-1} + a_{l_2} = a_{l_1}$, contracting $a_{x-1}a_{l_2} \notin E$.

If $a_x + a_{l_1} = a_{j_0}$ and $a_x + a_{l_2} = a_{x+1}$ then $a_{l_1} + a_{x+1} = a_{j_0} + a_{l_2} \in S$. Uniting $a_{l_1} + a_{x+1} = a_{j_0} + a_{l_2} \in S$ and $a_{x-1} + a_{l_1} = a_{l_2}$, we have $a_{j_0} + a_{x-1} = a_{x+1}$. If $a_{l_1} + a_{x+1} = a_{j_0} + a_{l_2} \in V$ then $a_{l_1} + a_{x+1} = a_{j_0} + a_{l_2} = a_{x-1}$. Since $a_{x-1} = a_{j_0} + a_{l_2} = a_{j_0} + (a_{x-1} + a_{l_1})$, $a_{j_0} + a_{l_1} = 0$. Thus, $(a_x + a_{j_0}) + a_{l_1} = a_x + (a_{j_0} + a_{l_1}) = a_x \in S$, contracting $a_x + a_{j_0} \in C$. If $a_{l_1} + a_{x+1} = a_{j_0} + a_{l_2} \in C$ then $a_{x+1} + a_{l_2} = (a_{j_0} + a_{x-1}) + a_{l_2} = (a_{j_0} + a_{l_2}) + a_{x-1} \in S$, contracting $a_{j_0} + a_{l_2} \in C$.

Thus, Claim 1 holds.

Up to now, we may assume that $a_x + a_{j_0} \in C$ and $a_x + a_{l_1} \in C$ with $\{a_xa_{j_0}, a_xa_{l_1}\} \subseteq E_x$.

Claim 2: If a_x is one end vertex of P_6 then $\zeta(P_6) \geq 3$.

In fact, if a_x is an end vertex of P_6 then $|V_x| = 1$. Let $V_x = \{a_{x+1}\}$. Assume that $a_{j_0}a_{x-1} \in E$ (see Figure 8) (if not, we can consider $a_{l_1}a_{x-1} \in E$).
By contradiction. Suppose to the contrary that $\zeta(P_6) \leq 2$. By Claim 1, $\zeta(P_6) \geq 2$. So $\zeta(P_6) = 2$. Let $C = \{a_x + a_j, a_x + a_i\}$. Then $\{a_x + a_{x-1}, a_x + a_{i_2}\} \subseteq \{(a_{j_0}) \cup V_x) \cap (\{a_{l_1}\} \cup V_{l_1})$.

According to the choice of $a_{x-1} < 0$ and $a_{i_2} < 0$. So there is only one case of $\{a_x + a_{x-1}, a_x + a_{i_2}\} = \{a_{j_0}, a_{l_1}\}$ and $P_6 = a_{x}a_{x+1}a_{j_0}a_{i_2}a_{1}a_{x-1}$ (see Figure 9).

![Figure 9](image)

If $a_x + a_{x-1} = a_{j_0}$ and $a_x + a_{i_2} = a_{l_1}$ then $a_{j_0} + a_{l_1} = (a_x + a_{x-1}) + a_{l_1} = (a_x + a_{l_1}) + a_{x-1} \in S$, contracting $a_x + a_{l_1} \in C$.

If $a_x + a_{x-1} = a_{l_1}$ and $a_x + a_{i_2} = a_{j_0}$ then $a_{j_0} + a_{l_1} = (a_x + a_{i_2}) + a_{j_0} = (a_x + a_{j_0}) + a_{l_1} \in S$, contracting $a_x + a_{j_0} \in C$.

Thus, Claim 2 holds.

Claim 3: If a_x is not an end vertex of P_6 then $\zeta(P_6) \geq 3$.

In fact, if a_x is not an end vertex of P_6 then $|V_x| = 2$. Let $V_x = \{a_{x+1}, a_{x-1}\}$. Then $a_xa_{x+1} \notin E$ and $a_xa_{x-1} \notin E$. Let $a_xa_{i_2} \in E_x - \{a_x, a_{j_0}, a_xa_{l_1}\}$. Since $\{a_x + a_{j_0}, a_x + a_{l_1}\} \subseteq C$, $a_x + a_{i_2} \in (\{a_{j_0}\} \cup V_{j_0}) \cap (\{a_{l_1}\} \cup V_{l_1}) \cup C$.

By contradiction. Suppose to the contrary that $\zeta(P_6) \leq 2$. By Claim 1, $\zeta(P_6) = 2$. Let $C = \{a_x + a_{j_0}, a_x + a_{l_1}\}$. Then $a_x + a_{i_2} \in V$. So $a_{i_2} < 0$ and it is impossible that both of a_{j_0} and a_{l_1} are adjacent to a_{i_2}. Assume $a_ja_i \in \{a_{x+1}, a_{j_0}, a_{j_0}a_{i_1}, a_{i_1}a_{l_2}, a_{l_2}a_{x-1}\}$. Then $a_x + a_{i_2} \in \{a_{j_0}, a_{l_1}\}$ with $a_{j_0}a_{i_1} \notin E$ (if $a_{j_0}a_{i_1} \in E$ then $a_x + a_{i_2} \in (\{a_{j_0}\} \cup V_{j_0}) \cap (\{a_{l_1}\} \cup V_{l_1}) = \emptyset$. It is impossible.) (see Figure 10).
Similarly, \(a_{j_0} + a_{x-1} \in \{a_x, a_{x+1}\} \cup C \); \(a_{x+1} + a_{l_1} \in \{a_x, a_{x-1}\} \cup C \); \(a_{x-1} + a_{l_1} \in \{a_x, a_{x+1}\} \cup C \); \(a_{x+1} + a_{l_2} \in \{a_x, a_{x-1}\} \cup C \); \(a_{j_0} + a_{l_2} \in \{a_x, a_{x+1}\} \cup C \). (1.1) If \(a_{x} + a_{l_2} = a_{j_0} \) and \(a_{j_0} + a_{x-1} = a_{x} \) then \(a_{x} + a_{l_1} = (a_{j_0} + a_{x-1}) + a_{l_1} = a_{j_0} + (a_{x-1} + a_{l_1}) \in S \). So \(a_{x-1} + a_{l_1} = a_{x+1} \), which implies \(a_{x} + a_{l_1} = a_{j_0} + a_{x-1} \) and \(a_{j_0} a_{x+1} + E \). Since \((a_{x} + a_{j_0}) + a_{x+1} = a_{x} + (a_{j_0} + a_{x+1}) \not\in S \), \(a_{j_0} + a_{x+1} \in \{a_{x-1}\} \cup C \).

(1.1.1) If \(a_{j_0} + a_{x+1} = a_{x-1} \) then \(a_{l_1} + a_{j_0} = 0 \) (since \(a_{x-1} + a_{l_1} = a_{x+1} \)). So \(a_{x} + a_{l_1} = (a_{j_0} + a_{x-1}) - a_{j_0} = a_{x-1} \in V \), contracting \(a_{x} + a_{l_1} \in C \).

(1.1.2) If \(a_{x+1} + a_{j_0} \in C \), \((a_{x+1} + a_{j_0}) + a_{l_1} = (a_{x+1} + a_{l_1}) + a_{j_0} \not\in S \). Then \(a_{x+1} + a_{l_1} \in C \). So \(\{a_{x+1} + a_{j_0}, a_{x+1} + a_{l_1}\} \subseteq C = \{a_{x} + a_{j_0}, a_{x} + a_{l_1}\} \), a contraction.

(1.2) If \(a_{x} + a_{l_2} = a_{j_0} \) and \(a_{j_0} + a_{x-1} = a_{x+1} \) then \(a_{x+1} + a_{l_1} = (a_{j_0} + a_{x-1} + a_{l_1} = a_{j_0} + a_{x+1}) \in S \). So \(a_{x-1} + a_{l_1} = a_{x} \). Since \(a_{x+1} + a_{l_2} = a_{j_0} + a_{x-1} = a_{x} + a_{l_1} + a_{l_2} = a_{j_0} + a_{l_2} = a_{x+1} \). Uniting \(a_{x} + a_{l_2} = a_{j_0} \) and \(a_{j_0} + a_{l_2} = a_{x+1} \), we have \(a_{x} + 2a_{l_2} = a_{x-1} \), contracting the choice of \(a_{x} \).

(1.3) If \(a_{x} + a_{l_2} = a_{j_0} \) and \(a_{j_0} + a_{x-1} \in C \) then \(a_{l_2} = a_{j_0} + a_{x-1} \) \(a_{j_0} + a_{x-1} \not\in S \). So \(a_{l_2} + a_{j_0} = a_{x-1} \). If not, then \(a_{l_2} + a_{j_0} \in C \), but \(a_{l_2} + a_{j_0} \not\in C = \{a_{x} + a_{j_0}, a_{x} + a_{l_1}\} \), a contraction.). Then \((a_{x+1} + a_{l_2}) + a_{j_0} = a_{x+1} + a_{x-1} \in S \). So \(a_{x+1} + a_{l_2} = a_{x} \), contracting the choice of \(a_{x} \).

(2) If \(a_{x} + a_{l_2} = a_{j_0} \) then \(a_{l_2} + a_{x+1} = a_{x} + a_{l_2} + a_{x+1} = a_{x} + (a_{x} + a_{l_2}) + a_{x+1} \in S \). So \(a_{x+1} + a_{l_2} = a_{x} + a_{l_2} \), \(a_{x} + a_{l_2} = a_{x}, \) contracting \(a_{x} + a_{l_2} \not\in C \).

Assume that \(a_{x-1} = x \). By the above, \(a_{j_0} = 2x \) and \(a_{x+1} = 3x \) and \(a_{x} = 5x \).

(2.1) If \(a_{x} + a_{l_2} = a_{x-1} \) (note that \(a_{x} + a_{x-1} = a_{x+1} \)). Assume that \(a_{x-1} = x \). By the above, \(a_{j_0} = 2x \) and \(a_{x+1} = 3x \), contracting \(a_{x} + a_{j_0} \not\in E \).

(2.2) If \(a_{x} + a_{x-1} = 2a_{l_2} = a_{j_0} + a_{x-1} = a_{x+1} \) (If \(a_{j_0} + a_{x-1} \in C \) then \((a_{j_0} + a_{x-1}) + a_{x+1} = a_{j_0} + (a_{x-1} + a_{x+1}) = a_{j_0} + a_{l_2} \) \(a_{j_0} + a_{l_2} \), a contraction). Since \(a_{j_0} + a_{x+1} = a_{j_0} + a_{x-1}, a_{j_0} + a_{l_2} = a_{j_0} + a_{l_2} \in C \).

(2.2.1) If \(a_{j_0} + a_{l_2} = a_{x-1} \) then \(-a_{l_2} = a_{x-1} - a_{j_0} + a_{l_2} = a_{l_2} + a_{x+1} + a_{l_2} \) contracting \(a_{x+1} = 2a_{l_2} \).

(2.2.2) If \(a_{j_0} + a_{l_2} = a_{x-1} \) then \(a_{j_0} + a_{l_2} = a_{x+1} \) \(a_{j_0} + a_{l_2} = a_{x} + a_{l_2} = 2a_{x} + a_{l_2} \). So \(a_{j_0} = 2a_{x} \), contracting the choice of \(a_{x} \).

Therefore, Claim 3 holds.

Thus, Lemma 2.5 holds. \(\Box \)
Lemma 2.6 \(\sigma(P_6) = 4 \).

Proof: Let \(V = \{a_x, a_{x+1}, a_{x-1}, a_{l_1}, a_j, a_{j_0}\} \) and \(a_x = \max \{a : a \in V\} \). Then \(a_x + a_i \in C \) for all \(a_x, a_i \in E \). Firstly, Figure 11 below shows that \(\sigma(P_6) \leq 4 \). What we need is to prove \(\sigma(P_6) \geq 4 \).

![Figure 11](image)

If \(a_x \) is an end vertex of \(P_n \) then \(\sigma(P_6) \geq 4 \). Otherwise, it is clear that \(\sigma(P_6) \geq 3 \). Below we will prove that \(\sigma(P_6) \neq 3 \).

By contradiction. Suppose to the contrary that \(\sigma(P_6) = 3 \). Then \(C = \{a_x + a_{l_1}, a_x + a_{l_2}, a_x + a_{j_0}\} \). Assume that \(V_x = \{a_{x+1}, a_{x-1}\} \) and \(a_i, a_j \in \{a_{l_1}, a_{x+1}, a_{x-1}, a_{j_0}\} \), where \(a_i \) and \(a_j \) are two end vertices of \(P_6 \) (see Figure 12).

![Figure 12](image)

Since \((a_x + a_{j_0}) + a_{l_1} = a_x + (a_{j_0} + a_{l_1}) \not\in S \), \(a_{j_0} + a_{l_1} \in \{a_x, a_{x+1}, a_{x-1}\} \cup C \). Similarly, \(a_{x-1} + a_{l_1} \in \{a_x, a_{x+1}\} \cup C \); \(a_{x-1} + a_{l_2} \in \{a_x, a_{x+1}\} \cup C \); \(a_{x+1} + a_{l_2} \in \{a_x, a_{x-1}\} \cup C \); \(a_{x+1} + a_{j_0} \in \{a_x, a_{x-1}\} \cup C \).

(I) If \(a_{j_0} + a_{l_1} = a_x \) then \(a_x + a_{x-1} = (a_{j_0} + a_{l_1}) + a_{x-1} = (a_{x-1} + a_{l_1}) + a_{j_0} \not\in S \), which implies \(a_{x-1} + a_{l_1} \in \{a_{j_0}\} \cup \{a_{l_1}, a_{l_2}\} \cup C \). By the above, \(a_{x-1} + a_{l_1} \in C \). So
\((a_{x-1} + a_{i_1}) + a_{i_2} = a_{i_1} + (a_{x-1} + a_{i_2}) \not\in S\), which implies \(a_{x-1} + a_{i_2} \not\in \{a_{x+1}\} \cup C\).

Similarly, \(a_{x-1} + a_{i_2} \in \{a_{i_1}\} \cup \overline{V_i} \cup C\) with \(\overline{V_i} \subseteq \{a_{x+1}, a_{i_2}\}\).

(1.1) If \(a_{x-1} + a_{i_2} = a_{x+1}\) then \(a_{x-1} + a_{i_2} \in \{a_{i_1}\} \cup C\). Furthermore, \(a_{x-1} + a_{i_2} \in C\). (If not, then \(a_{x-1} + a_{x+1} = a_{i_1}\). Then \(a_x = a_{x_0} + a_{i_1} = a_{x_0} + (a_{x-1} + a_{x+1}) = (a_{x_0} + a_{i_1}) + a_{x-1} \not\in S\). So \(a_{x_0} + a_{i_1} = a_{i_1} = a_{x-1} + a_{x+1}\), which implies \(a_{x_0} + a_{i_2} = a_{x-1} + a_{x+1}\), a contradiction with \(a_{x-1} + a_{i_2} = a_{x+1}\).)

So \((a_{x-1} + a_{i_2}) + a_{j_1} = a_{x-1} + (a_{i_2} + a_{j_1}) \not\in S\). By the above, \(a_{x+1} + a_{j_1} \in \{a_{x}\} \cup C\).

(1.1.1) If \(a_{x+1} + a_{j_1} = a_{x}\) then \(a_{x} + a_{j_0} = (a_{x+1} + a_{i_2}) + a_{j_0} = (a_{x+1} + a_{i_2}) + a_{j_0} \not\in S\). which implies \(a_{x+1} + a_{j_0} \not\in V\). By the above, \(a_{x+1} + a_{j_0} \not\in a_{x-1}\).

Uniting \(a_{x+1} = a_{x-1} + a_{i_2}\), we have \(a_{i_2} + a_{j_0} = 0\), a contradiction.

(1.1.2) If \(a_{x+1} + a_{j_1} \in C\) then \((a_{x+1} + a_{j_1}) + a_{j_0} = (a_{x+1} + a_{j_0}) + a_{j_1} \not\in S\), which implies \(a_{x+1} + a_{j_0} \not\in \{a_{i_1}\} \cup \overline{V_i} \cup C\). By the above, \(a_{x+1} + a_{j_0} \in C\).

(1.1.2.1) If \(a_{x+1} + a_{i_1} \in E\) then \(a_{x+1} + a_{i_1} \in \{a_{i_1}\} \cup \overline{V_i} \cup C\). By the above, \(a_{x+1} + a_{i_1} \in C\).

(1.1.2.2) If \(a_{i_1} + a_{i_2} \in E\) then \(a_{i_1} + a_{i_2} \in \{a_{i_1}\} \cup \overline{V_i} \cup C\). Uniting \(a_{i_1} + a_{i_2} \in \{a_{i_1}\} \cup \overline{V_i} \cup C\), we have \(a_{i_1} + a_{i_2} = a_{i_1}\). So \(a_{x+1} + a_{i_2} = a_{x} + a_{i_1} = a_{x} + a_{i_1} \in C\), contradicting \(a_{x+1} + a_{i_2} \in C\).

(1.1.2.3) If \(a_{i_1} + a_{i_1} \in E\) then \(a_{i_1} + a_{i_1} \in S\). Since \(a_{x+1} + a_{i_1} = (a_{x_0} + a_{i_1}) + a_{i_2} = (a_{x_0} + a_{i_1}) \not\in S\), we have \(a_{x+1} + a_{i_1} = a_{x_0} + a_{i_1} \not\in S\). So \(a_{x+1} + a_{i_1} = (a_{x+1} + a_{i_1} + a_{i_1}) \not\in S\), contradicting \(a_{x+1} + a_{i_1} \in C\).

(1.1.2.4) If \(a_{x-1} + a_{j_0} \in E\) then \(a_{x-1} + a_{j_0} = (a_{x-1} + a_{i_2}) + a_{j_0} = (a_{x-1} + a_{j_0}) + a_{i_2} \not\in S\). So \(a_{x-1} + a_{j_0} = (a_{x-1} + a_{j_0}) + a_{i_2} \not\in S\), contradicting \(a_{x-1} + a_{j_0} \in S\).

(1.2) If \(a_{x+1} + a_{i_2} \in C\) then \(a_{x+1} + a_{i_2} \in \{a_{i_1}\} \cup \overline{V_i} \cup C\). Since \(a_{x-1} + a_{i_1} \in C\), \(a_{x-1} + a_{x-1} \in \{a_{i_1}\} \cup \overline{V_i} \cup C\). So \(a_{x-1} + a_{x-1} \in \{a_{i_1}\} \cup \overline{V_i} \cup C\).

Since \(a_{x+1} + a_{j_0} \not\in a_{x} + a_{i_1}, a_{x+1} + a_{j_0} \in \{a_{x-1}\} \cup C\). Since \(a_{x+1} + a_{j_0} \not\in a_{x} + a_{i_1}, a_{x-1} \not\in \{a_{x-1}\} \cup C\).

(1.2.1) If \(a_{x-1} + a_{i_1} = a_{x} + a_{i_2} \) then \(a_{x-1} = a_{j_0} + a_{i_2}\) and \(a_{x} + a_{i_2} = a_{i_1} + a_{j_0}\). So \(2a_{i_2} = a_{j_0} + a_{i_2} = a_{x}\). Since \(a_{x+1} + a_{j_0} \not\in a_{x} = a_{i_2} + a_{x+1} + a_{j_0} \in C\). Uniting \(a_{x} + a_{i_2} = a_{x} + a_{i_1}\), we have \(a_{x+1} + a_{i_1} = a_{i_1}\) and \(a_{x} + a_{i_2} = a_{x} + a_{i_1}\).

(1.2.2) If \(a_{x-1} + a_{j_0} = a_{x} + a_{i_1}\) then \(a_{x-1} + a_{j_0} = a_{x} + a_{i_1}\) and \(a_{x} + a_{j_0} = a_{x} + a_{i_1}\).

(1.2.2.1) If \(a_{x+1} + a_{j_0} = a_{x} + a_{i_1}\) then \(a_{x+1} = 2a_{i_1}\). So \(2a_{i_1} = a_{j_0} + a_{i_1} \not\in a_{x} + a_{i_1}\). By the choice of \(a_{x}, a_{x+1} + a_{i_1} \in C\). Since \(a_{x} + a_{x+1} = 2a_{i_1} + 2a_{j_0} = 2(a_{j_0} + a_{i_1}) = 2a_{i_1} \in S\), contradicting the choice of \(a_{x}\).

(1.2.2.2) If \(a_{x+1} + a_{j_0} = a_{x} + a_{i_1}\) then \(a_{x+1} = 2a_{i_1}\) and \(a_{x} + a_{j_0} = 2a_{i_1} + 2a_{j_0} = 2(a_{j_0} + a_{i_1}) = 2a_{i_1} \not\in a_{x} + a_{i_1}\), a contradiction.
By Lemma 2.4, there exists one edge $=2a_0 + a_1 = a_{x+1}$ then $a_{x+1} = (a_{j_0} + a_{l_0}) + a_{x-1} = (a_{j_0} + a_{l_0}) + a_{x-1} + a_{l_1} \in S$. Then $a_{x-1} + a_{j_0} = a_x$. Since $a_{x+1} + a_{l_1} = (a_{x-1} + a_{j_0}) + a_{l_2} = (a_{x-1} + a_{l_2} + a_{j_0} \in S, a_{x-1} + a_{l_2} = a_{x+1} = (a_{j_0} + a_{l_1})$.

Uniting $a_{x-1} + a_{j_0} = a_x$ and $a_{x-1} + a_{l_2} = a_{x+1}$, we have $a_x + a_{l_2} = a_{x+1} + a_{j_0} \in C$.

Uniting $a_{x-1} + a_{j_0} = a_x$ and $a_{j_0} + a_{l_1} = a_{x+1}$, we have $a_x + a_{l_1} = a_{x+1} + a_{x-1} \in C$.

Uniting $(a_{x+1} + a_{j_0}) + a_{l_2} = (a_{x+1} + a_{l_2}) + a_{j_0} \notin S$ and $a_{x-1} + a_{l_2} = a_{x+1}$, we have $a_{x+1} + a_{l_2} \in C$. Then $a_{x+1} + a_{l_2} = a_x + a_{j_0}$, that is, $(a_{x-1} + a_{j_0}) + a_{j_0} = (a_{x-1} + a_{j_0}) + a_{l_2}$. So $2a_{j_0} = 2a_{l_2}$, a contradiction.

A similar argument works for $a_{j_0} + a_{l_1} = a_{x+1}$.

(III) If $a_{j_0} + a_{l_1} \in C$ then $a_{j_0} + a_{l_1} = a_x + a_{l_2}$.

Since $(a_{j_0} + a_{l_1} + a_{x-1} = (a_{j_0} + a_{l_1} + a_{j_0} \notin S, a_{l_1} + a_{x-1} \in C$. So $a_{l_1} + a_{x-1} = a_x + a_{l_2}$.

Since $a_{j_0} + a_{l_1} \in C, (a_{j_0} + a_{l_1} + a_{x-1} = (a_{j_0} + a_{l_1} + a_{j_0} \notin S, a_{j_0} + a_{x+1} = a_x + a_{j_0} \in C$.

Since $a_{j_0} + a_{x-1} \in C, (a_{j_0} + a_{x-1} + a_{x-1} = a_{j_0} + (a_{x-1} + a_{x-1}) \notin S$. So $a_{x-1} + a_{x-1} = a_{x} + a_{l_2} = a_{x-1} + a_{l_1} \in C$.

Uniting $a_{j_0} + a_{x-1} = a_x + a_{l_1}$ and $a_{x-1} + a_{x-1} = a_x + a_{l_2}$, we have $a_{x-1} + a_{l_1} = a_{j_0} + a_{l_2}$. Then $a_{j_0} + a_{l_2} \in E$.

Uniting $a_{x-1} + a_{x-1} = a_x + a_{l_2}$ and $a_{l_1} + a_{x-1} = a_x + a_{j_0}$, we have $a_{l_1} + a_{l_2} = a_{x+1} + a_{j_0} \in S$. Then $a_{l_1} + a_{l_2} \in E$, a contradiction.

So $\sigma(P_6) \neq 3$.

Thus, Lemma 2.6 holds. □

Lemma 2.7 Let $|a_x| = \max\{|a| : a \in V\}$ with $a_x \in V$. Then $a_x + a_p \in C$ for all $a_x a_p \in E$ with $n = 7$.

Proof: Let $|a_x| = \max\{|a| : a \in V\}$ with $a_x \in V$. Assume that $V = \{a_x, a_{x+1}, a_{x-1}, a_{j_0}, a_{l_0}, a_{l_1}, a_{l_2}, a_{j_1}, a_{l_3}\}$ and $a_x > 0$ (A similar argument works for $a_x < 0$).

By Lemma 2.4, there exists one edge $a_x a_{j_0} \in E_x$ such that $a_x + a_{j_0} \in C$.

Since $(a_x + a_{j_0}) + a_{l_1} = (a_x + a_{l_1}) + a_{j_0} \notin S, a_x + a_{l_1} \in \{a_{j_0}, a_{l_1} \} \cup \{a_{j_2}, a_{l_2}\} \cup C$ for all $a_x a_{l_1} \in E_x - a_x a_{j_0}$.

Claim There exists at least one edge $a_x a_{l_1} \in E_x - a_x a_{j_0}$ such that $a_x a_{l_1} \in C$.

In fact, if $|V_x| = 2$ then $|E_x| = 5$. Since $|a_{j_0}, a_{j_1} \cup a_{j_0}| = 3$, Claim 1 holds. If $|V_x| = 1$ then suppose to the contrary that $a_x + a_{l_1} \in V$ for all $a_x a_{l_1} \in E_x - a_x a_{j_0}$, then $a_1 < 0$ and $a_x + a_{l_1} > 0$. So there are at least eight distinct vertices, contradicting $n = 7$.

Thus, Claim holds.

Assume that $a_x a_{x+1} \notin E$ and $a_x + a_{l_1} \in C$ with $a_x a_{l_1} \in E_x - a_x a_{j_0}$. Since $a_x a_{l_1} \in C, a_x + a_{l_1} \in \{a_{j_0}, a_{l_2} \} \cup \{a_{j_1}, a_{l_3}\} \cup C$ for all $a_x a_{l_1} \in E_x - \{a_x a_{j_0}, a_x a_{l_1}\}$ with $i = 2, 3$. So $a_x + a_{l_1} \in \{(a_{j_0}, a_{j_1} \cup a_{j_2}) \cap (a_{j_0}, a_{l_1} \cup a_{l_2}) \} \cup C$.

By contradiction. Suppose to the contrary that $a_x a_{l_1} \in V$. By the above, $a_x + a_{l_1} \in (a_{j_0} \cup a_{j_1}) \cap (a_{j_0} \cup a_{l_1})$. There are at most two cases (I) (II) in
all (see Figure 13, 15). Let \(a_i \) and \(a_j \) be two end vertices of \(P_7 \).

(I) If \(a_i + a_j \in \{a_{x+1}a_j, a_{j0}, a_{i1}, a_{i2}, a_{i3}, a_{i4}, a_{i5}, a_{i6}, a_{i7}, a_{i8} \} \) then \(a_x + a_l = 0 \in \{a_{j0}, a_{i1} \} \) (see Figure 13).

(I.1) If \(a_x + a_l = a_{j0} \) then \(a_{j0} + a_{i3} = (a_x + a_{i3}) + a_{i2} \in S \). So \(a_x + a_{i3} \in V \). Uniting \(a_x + a_{j0} \in C \) and \(a_x + a_{i3} \in C \), we have \(a_x + a_{i3} = a_{i1} \), which implies \(a_{i1} + a_{i2} = a_{i3} + a_{j0} \) and \(a_{i3} \leq 0 \). Then \(a_{i1} a_{i2} \in E \) (see Figure 14).

Since \(a_{j0} + a_{x-1} = (a_x + a_{i2}) + a_{x-1} = a_x + (a_{i2} + a_{x-1}) \in S \), \(a_{i2} + a_{x-1} \in \{a_{i1}, a_{i3} \} \).

Since \(a_{j0} + a_{x+1} = (a_x + a_{i2}) + a_{x+1} = a_x + (a_{i2} + a_{x+1}) \notin S \), \(a_{i2} + a_{x+1} \in \{a_{x-1} \} \cup C \).

If \(a_{i2} + a_{x+1} \in C \) then \((a_{i2} + a_{x+1}) + a_{x-1} = (a_{i2} + a_{x-1}) + a_{x+1} \notin S \), contradicting \(a_{i2} + a_{x-1} \in \{a_{i1}, a_{i3} \} \). So \(a_{i2} + a_{x+1} = a_{x-1} \).

Since \(a_{i3} + a_{x-1} = a_{i3} + (a_{x+1} + a_{i0}) = a_{i2} + (a_{i3} + a_{x+1}) \notin S \) and \(a_{i3} + a_{x+1} \in \{a_{j0}, a_{i2} \}, a_{i3} + a_{x+1} = a_{i2} \). Note that \(a_{i1} + a_{i2} = a_{i3} + a_{j0} \in \{a_{x+1}, a_{x-1} \} \cup C \), then \((a_{i1} + a_{i2}) = a_{i3} + a_{j0} \in C \). So \((a_{i1} + a_{j0}) + a_{x+1} = (a_{i3} + a_{x+1}) + a_{j0} = a_{i2} + a_{j0} \in S \), contradicting \(a_{i3} + a_{j0} \in C \).

(I.2) If \(a_x + a_{i2} = a_{i1} \) then \(a_x + a_{i3} = a_{j0} \), which implies \(a_{i1} + a_{i3} = a_{i2} + a_{j0} \). So \(a_x + a_{i3} = a_{j0} \) (If not, then \(a_x + a_{i3} \in C \). So \((a_x + a_{i3}) + a_{i2} = (a_x + a_{i2}) + a_{i3} = a_{i1} + a_{i3} \in S \), contradicting \(a_x + a_{i3} \in C \).)

12
Since \(a_{l_1} + a_{x-1} = (a_x + a_{l_2}) + a_{x-1} = a_x + (a_{x-1} + a_{l_2}) \in S, a_{x-1} + a_{l_2} \in \{a_{j_0}, a_{l_1}\} \).

(I.2.1) If \(a_{x-1} + a_{l_2} = a_{j_0} \), then \(a_x + a_{j_0} = a_{l_1} + a_{x-1} \in C \). So \(a_{l_1} + a_{j_0} = a_{l_1} + (a_{x-1} + a_{l_2}) = (a_{l_1} + a_{x-1}) + a_{l_2} \in S \), contradicting \(a_{l_1} + a_{x-1} \in C \).

(I.2.2) If \(a_{x-1} + a_{l_2} = a_{l_1} \) then \(a_{x-1} + a_{l_1} = a_{j_0} \) (since \(a_{l_1} + a_{l_3} = a_{l_2} + a_{j_0} \)).

So \(a_x + a_{j_0} = a_x + (a_{x-1} + a_{l_1}) = (a_x + a_{l_1}) + a_{x-1} \in S \), contradicting \(a_x + a_{l_1} \in C \).

(II) If \(a_x a_j \in \{a_{x-1}a_{j_0}, a_{j_0}a_{l_1}, a_{l_1}a_{l_2}, a_{l_2}a_{x-1}, a_{x-1}a_x\} \) then \(a_x + a_{l_2} = a_{l_3} \) and \(a_{l_1}a_{l_3} \notin E \) and \(a_{j_0}a_{l_3} \notin E \). According to the choice of \(a_x, a_x + a_{l_3} \in C \) and \(a_{l_3} > 0 \) (see Figure 15).

II: Figure 15

Since \(a_{l_1} + a_{x+1} = (a_x + a_{l_2}) + a_{x+1} = a_x + (a_{l_2} + a_{x+1}) \in S, a_{l_2} + a_{x+1} \in \{a_{x-1}, a_{j_0}, a_{l_1}\} \).

Since \((a_x + a_{l_2}) + a_{x-1} = a_x + (a_{l_2} + a_{x-1}) \notin S \), \(a_{l_3} + a_{x-1} \in \{a_x, a_{x+1}\} \cup C \).

Similarly, \(a_{x+1} + a_{l_3} \in \{a_{x-1}\} \cup C; a_{l_1} + a_{x-1} \in \{a_x, a_{x+1}\} \cup C; a_{j_0} + a_{x-1} \in \{a_x, a_{x+1}\} \cup C; a_{l_1} + a_{l_3} \in \{a_{x-1}, a_{x-1}\} \cup C \).

(II.1) If \(a_{x+1} + a_{l_3} = a_{x-1} \) then \(a_{x+1} + a_{l_2} = a_{x+1} + (a_x + a_{l_2}) = (a_x + a_{l_1}) + a_{x-1} \), contradicting \(a_{x+1} + a_{l_2} \in \{a_{x-1}, a_{j_0}, a_{l_1}\} \).

(II.2) If \(a_{x+1} + a_{l_1} = C \) then \(a_{x+1} + a_{l_2} \in C \) (since \(a_{x+1} + a_{l_3} + a_{l_1} = (a_{x+1} + a_{l_1}) + a_{l_3} \notin S \)).

Then \((a_{x+1} + a_{l_1}) + a_{l_2} = (a_{x+1} + a_{l_2}) + a_{l_1} \notin S \).

Since \(a_{x+1} + a_{l_3} \in C, (a_{x+1} + a_{l_1}) + a_{l_2} = (a_{x+1} + a_{l_2}) + a_{l_3} \notin S \). Uniting \(a_{l_2} + a_{x+1} \in \{a_{x-1}, a_{j_0}, a_{l_1}\} \), we have \(a_{x+1} + a_{l_2} = a_{l_1} \). So \(a_{l_1} + a_{l_2} = (a_{x+1} + a_{l_1} + a_{l_2}) + a_{l_3} = a_{x+1} + (a_{l_1} + a_{l_3}) \notin S \), which implies \(a_{l_1} + a_{l_3} \in \{a_{x+1}\} \cup C \).

So \(a_{l_1} + a_{j_0} = (a_{x+1} + a_{l_2}) + a_{j_0} = a_{x+1} + (a_{l_2} + a_{j_0}) \in S \), which implies \(a_{l_2} + a_{j_0} \in \{a_x\} \cup \{V_x\} \).

Then \(a_{x+1} + (a_{l_1} + a_{j_0}) = (a_{x+1} + a_{l_1}) + a_{j_0} \notin S \), which implies that \(a_{l_1} + a_{j_0} \in \{a_x\} \cup C \).

(II.2.1) If \(a_{l_1} + a_{j_0} \in C \) then \((a_{l_1} + a_{j_0}) + a_{l_2} = a_{l_1} + (a_{l_2} + a_{j_0}) \notin S \), a contradiction \(a_{l_1} + a_{j_0} \in \{a_x\} \cup \{V_x\} \).

(II.2.2) If \(a_{l_1} + a_{j_0} = a_x \) then \(a_{x+1} + a_{l_2} = (a_{l_1} + a_{j_0}) + a_{l_2} = a_{l_1} + (a_{l_2} + a_{j_0}) \in S \), which implies \(a_{l_2} + a_{j_0} \in \{a_{x-1}, a_{x+1}\} \).

(II.2.2.1) If \(a_{l_2} + a_{j_0} \in C \) then \((a_{l_2} + a_{j_0}) + a_{l_3} = (a_{l_2} + a_{j_0}) + a_{l_1} = a_{l_3} + a_{j_0} \in \{a_{x-1}, a_{x+1}\} \).

(II.2.2.2) If \(a_{l_2} + a_{j_0} = a_{x+1} \) then \(a_{l_2} + a_{j_0} = a_{x+1} \).

Since \(a_{x-1} + a_{l_1} = (a_{l_2} + a_{j_0}) + a_{l_1} = a_{l_2} + (a_{l_1} + a_{j_0}) = a_{l_2} + a_{x} = a_{l_1}, a_{x-1} + a_{l_1} = a_{l_1}, \) a contradiction.
Thus, Lemma 2.7 holds. □

Lemma 2.8 If $a_x \in V$ with $|a_x| = \max\{|a| : a \in V\}$, then $a_x + a_p \in C$ for any $a_x a_p \in E$ with $n \geq 8$.

Proof: Let $|a_x| = \max\{|a| : a \in V\}$ with $a_x \in V$. Assume that $a_x > 0$ (A similar argument works for $a_x < 0$). By contradiction. Suppose to the contrary that there exist $a_{p_0} \in V$ and $a_{k_0} \in V - \{a_{p_0}, a_x\}$ such that $a_x + a_{p_0} = a_{k_0}$. According to the choice of a_x, $a_x + a_{p_0} > 0$ and $a_{p_0} < 0$. Let $V_0 = \{a_{k_0}, a_x\} \cup \overline{V_{k_0}} \cup \overline{a_x}$. Then $a_x a_l \in E$ and $a_{k_0} a_l \in E$ for all $a_l \in V - V_0$. So $a_{k_0} + a_l = (a_x + a_{p_0}) + a_l = (a_x + a_l) + a_{p_0} \in S$. Thus, $a_x + a_l \in V - \{a_x, a_{k_0}, a_{p_0}\}$ with $a_x + a_l > 0$ and $a_l < 0$. Since $n \geq 8$, there exists at least one such vertex a_l above (see Figure 16).

![Figure 16](image.png)

II. Figure 16

On the other hand, by Lemma 2.2, there exists one edge $a_x a_{j_0} \in E$ such that $a_x + a_{j_0} \in C$ for $n \geq 8$. Then $a_x a_j \in E$ for all $a_j \in V - \{a_x\} \cup \overline{a_x}$. So $a_x + a_{j_0} + a_j = (a_x + a_j) + a_{j_0} \not\in S$. Thus, $a_x + a_j \in \{a_{j_0}\} \cup \overline{a_{j_0}} \cup C$ for all $a_j \in V - \{a_x\} \cup \overline{a_x}$.

For all $a_l \in V - V_0$, $a_x + a_l \in \{a_{j_0}\} \cup \overline{a_{j_0}}$. Since $|V_l| \in \{1, 2\}$ for all $a_l \in V$, $n - 6 \leq |V - V_0| \leq |\{a_{j_0}\} \cup \overline{a_{j_0}}| \leq 3$, that is, $n \leq 9$. So we only consider $n = 9$ and $n = 8$. If $|V_l| = 2$ then let $V_l = \{a_i - 1, a_i + 1\}$ for any $a_i \in V$. If $|V_l| = 1$ then let $V_l = \{a_i +iright\}$ for any $a_i \in V$.

Case 1 $n = 9$

I. If a_{j_0} is an end vertex of P_n then $|\{a_{j_0}\} \cup \overline{a_{j_0}}| = 2$, contradicting $|V - V_0| \geq 3$.

II. If a_{j_0} is not an end vertex of P_n then $|\{a_{j_0}\} \cup \overline{a_{j_0}}| = 3$. So a_x is not an end vertex of P_n (If not, $|\{a_x\} \cup \overline{a_x}| = 2$. So $|V - V_0| \geq 4$, contradicting $|\{a_{j_0}\} \cup \overline{a_{j_0}}| \leq 3$). Thus, only $|\{a_x\} \cup \overline{a_x}| = |\{a_{k_0}\} \cup \overline{a_{k_0}}| = |\{a_{j_0}\} \cup \overline{a_{j_0}}| = 3$.

Note: $n = 9$ and none of the vertices in $\{a_x, a_{j_0}, a_{k_0}\}$ is an end vertex of P_n.

If $a_{k_0} a_{j_0} \in E$ then $a_{k_0} + a_{j_0} = (a_x + a_{p_0}) + a_{j_0} = (a_x + a_{j_0}) + a_{p_0} \in S$, contradicting $a_x + a_{j_0} \in C$.

14
If \(a_{k_0}a_{j_0} \notin E \) then there exists one vertex \(a_y \in V - V_0 \) such that \(a_x + a_y = a_{j_0+1} \) with \(a_{j_0}a_{j_0+1} \notin E \) and \(a_{j_0+1} \in V \). So \(a_{k_0} + a_{j_0+1} = a_{k_0} + (a_x + a_y) = (a_x + a_{k_0}) + a_y \in S \), contradicting \(a_x + a_{k_0} \in C \).

Case 2: \(n = 8 \)

(1) If \(a_{j_0} \) is an end vertex of \(P_n \) then \(\{|a_{j_0}\} \cup \{a_{j_0+1}\} \). Let \(\overline{V_{j_0}} = \{a_{j_0+1}\} \).

(1.1) If \(a_x \) is the other end vertex of \(P_n \) then we consider the below.

If \(a_{j_0} = a_{k_0} = a_x + a_{p_0} \) then \(|V_0| = 4 \), contradicting \(\{|a_{j_0}\} \cup \{a_{j_0+1}\} \).

If \(a_x + a_{p_0} = a_{k_0} \notin \{|a_{j_0}, a_{j_0+1}\} \) then \(a_{j_0}a_{k_0} \in E \). So \(a_{j_0} + a_{k_0} = a_x + a_{p_0} = (a_x + a_{j_0}) + a_{p_0} \in S \), contradicting \(a_x + a_{j_0} \in C \) (See Figure 17).

![Figure 17](image)

If \(a_{j_0} \neq a_{k_0} \) and \(a_{j_0+1} = a_{k_0} = a_x + a_{p_0} \) then \(|V - V_0| = 3 \), contradicting \(\{|a_{j_0}\} \cup \{a_{j_0+1}\} \). (See Figure 18).

![Figure 18](image)

(1.2) If \(a_x \) is not the other end vertex of \(P_n \) then \(\{|a_x\} \cup \{a_{x+1}\} \). So \(\overline{V_{x+1}} = \{a_{x+1}\} \).

(1.2.1) If \(a_{j_0} = a_{k_1} \) with \(a_{j_0}a_{j_0+1} \notin E \), then there exist two distinct vertices \(a_y, a_{j_0-1} \in V - V_0 \), then \(\{|a_{j_0}, a_y, a_x + a_{j_0-1}\} \notin \{|a_{j_0}, a_{j_0+1}\} \). Since \(a_x + a_{j_0} \in C \), \(\{|a_x, a_{k_0+1}\} \cup \{|a_{x}, a_{j_0+1}\} \notin S \), then \(a_x + a_{k_0+1} \in C \).

Select any vertex \(a_z \in \{|a_y, a_{j_0-1}\} \) and then \(a_{j_0} + a_{k_0+1} = (a_x + a_z) + a_{k_0+1} = (a_x + a_{k_0+1}) + a_z \in S \), contradicting \(a_x + a_{k_0+1} \in C \) (See Figure 19).
(I.2.2) If $V = \{a_{x-1}, a_x, a_x+1, a_{k_0}, a_{k_0+1}, a_{k_0-1}, a_{j_0}, a_{j_0+1}\}$, then a_{x+1} is the other end vertex of P_n. So $a_x a_{x+1} \not\in E$. Since $a_x + a_{j_0} = a_{k_0} > 0$, we have $a_x + a_{k_0} \in C$. Since $\{a_x + a_{k_0}, a_x + a_{j_0}\} \subseteq C$, we have $\{a_x + a_{j_0+1}, a_x + a_{k_0-1}\} \subseteq C$. So only $a_x + a_{k_0+1} = a_{k_0}$. Thus, $a_{k_0} + a_{j_0} = (a_x + a_{k_0+1}) + a_{j_0} = (a_x + a_{j_0}) + a_{k_0+1} \in S$, contradicting $a_x + a_{j_0} \in C$ (See Figure 20).

(II) If a_{j_0} is not an end vertex of P_n then $|\{a_{j_0}\} \cup \overline{V_{j_0}}| = 3$.

(II.1) If there exist two distinct vertices $a_{l_1}, a_{l_2} \in V - V_0$ such that $a_x + a_{l_1} = a_{j_0-1} > 0$ and $a_x + a_{l_2} = a_{j_0+1} > 0$ then $a_x + a_{j_0-1} \in C$ and $a_x + a_{j_0+1} \in C$. So $a_{j_0-1} + a_{j_0+1} = (a_x + a_{l_1}) + a_{j_0+1} = (a_x + a_{j_0+1}) + a_{l_1} \in S$, contradicting $a_x + a_{j_0+1} \in C$ (See Figure 21).
(II.2) Let \(\{a_{y_1}, a_{y_2}\} = \{a_{j_0-1}, a_{j_0+1}\} \). If there exists at most one vertex \(a_{y_1} \in \{a_{j_0-1}, a_{j_0+1}\} \) such that \(a_x + a_{l_1} = a_{y_1} > 0 \), then we can consider \(a_{y_1} \) as \(a_{k_0} \) in the following.

(II.2.1) If \(a_x a_{y_2} \in E \) then \(a_x + a_{y_2} \in V \cup C \).

If \(a_x + a_{y_2} \in C \) then \(a_{y_1} + a_{y_2} = (a_x + a_{l_1}) + a_{y_2} = (a_x + a_{y_2}) + a_{l_1} \in S \), contradicting \(a_x + a_{y_2} \in C \).

If \(a_x + a_{y_2} \in V \) and \(a_{l_1}, a_{y_1} \notin E \) then \(a_x + a_{y_2} \in \{a_{j_0}\} \cup V_{j_0} \), a contradiction (See Figure 22).

![Figure 22](image)

If \(a_x + a_{y_2} \in V \) and \(a_{l_1}, a_{y_1} \in E \) then exists one vertex \(a_z \in V - V_0 \) such that \(V - V_0 \) such that \(a_x + a_z \in \{a_{y_1}, a_{y_2}, a_{j_0}\} \). But it is impossible (See Figure 23).

![Figure 23](image)

(II.2.2) If \(a_x a_{y_2} \notin E \) then \(a_x a_{y_1} \in E \) and there exist two distinct vertices \(a_{x_1}, a_{x_2} \in V - V_0 \) such that \(a_x a_{x_1} \in E \) and \(a_x a_{x_2} \in E \). Since \(a_x + a_{l_1} = a_{y_1} \), we have \(\{a_x + a_{x_1}, a_x + a_{x_2}\} = \{a_{y_2}, a_{j_0}\} \). Assume that \(a_x + a_{x_1} = a_{y_2} \). Then \(a_{y_1} + a_{y_2} = a_{y_1} + (a_x + a_{x_1}) = a_{x_1} + (a_x + a_{y_1}) \in S \), contradicting \(a_x + a_{y_1} \in C \) (see Figure 24).

17
Thus, Lemma 2.8 holds. □

Lemma 2.9 Let \(|a_x| = \max\{|a| : a \in V\}\) and \(E_x = \{a_xa_i | a_xa_i \in E\}\) with \(a_x \in V\). Then \(a_k + a_l \in C\) for any \(a_k a_l \in E - E_x\) for \(n \geq 7\).

Proof: Let \(|a_x| = \max\{|a| : a \in V\}\) and \(E_x = \{a_xa_i | a_xa_i \in E\}\) with \(a_x \in V\). If \(|V| = 2\) then we may assume that \(V = \{i-1, i+1\}\) for \(i \in V\). Assume \(a_x > 0\) (A similar argument works for \(a_x < 0\)). By lemma 2.3, \(a_x + a_l \in C\) for any \(a_x a_l \in E_x\). For all \(a_k a_l \in E - E_x\), either there exists one vertex in \(\{a_k, a_l\}\) (we may assume \(a_k\)) such that \(a_k a_x \in E\), or \(a_k a_x \notin E\) and \(a_l a_x \notin E\).

Claim 1 If \(a_k\) and \(a_l\) are the end vertices of \(P_n\) then all the sums of the edges adjacent to \(a_k\) or \(a_l\) belong to \(C\).

In fact, if \(a_k\) and \(a_l\) are the end vertices of \(P_n\) then \(a_k + a_l \in E\) and \(d_G(a_k) = d_G(a_l) = n - 2\). By lemma 2.3, \(a_k + a_l \in C\). For all \(a_k a_l \in E - E_x\), \((a_k + a_l) + a_l = a_k + a_l + a_l \notin S\). So \(a_k + a_l \in \{a_k\} \cup V_x\) or \(a_k + a_l \in C\). Then there are at most three edges \(a_k a_{l_1} \in E - E_x\) such that \(a_k + a_{l_1} \in \{a_k\} \cup V_x\) for \(i = 1, 2, 3\) (Since \(|\{a_k\} \cup V_x| \leq 3\). And others belong to \(C\).

If there exist three edges \(a_k a_{l_1} \in E - E_x\) such that \(a_k + a_{l_1} \in V\) then we may assume \(a_k + a_{l_1} = a_x\), with \(a_x \in \{a_k\} \cup V_x\) and \(i \in \{1, 2, 3\}\). Since \(n \geq 7\) and \(d_G(a_k) = n - 2 \geq 5\), there exists one edge \(a_k a_{l_1} \in E - E_x - \{a_k a_{l_1}, a_k a_{l_2}, a_k a_{l_3}\}\) such that \(a_x a_{l_1} \in E\) with \(i_0 \in \{1, 2, 3\}\). Then \(a_k + a_{l_1} \in C\) and \(a_x a_{l_1} \in S\) (see Figure 25).

Figure 25
So $a_{z_0} + a_{t_4} = (a_k + a_{t_0}) + a_{t_4} = (a_k + a_{t_4}) + a_{t_0} \in S$, contradicting the fact $a_k + a_{t_4} \in C$.

It is more easy to get contradictions when there exist two or one edge $a_ka_{t_i} \in E - E_x$ such that $a_k + a_{t_i} \in V$ for $i \in \{1, 2\}$. Thus, all the sums of the edges adjacent to a_k belong to C.

A similar argument works for a_y.

Thus, Claim 1 holds.

Claim 2 If $a_h + a_{l'} \in C$ and $a_h + a_{l''} \in C$ with $a_{l'}a_{l''} \in E$ then $a_h + a_l \in C$ for any $a_ha_l \in E$.

In fact, since $a_h + a_{l'} \in C$, $(a_h + a_{l'}) + a_l = (a_h + a_l) + a_{l'} \not\in S$ for all $a_ha_l \in E - \{a_ha_{l'}, a_ha_{l''}\}$. Then $a_h + a_l \in \{a_{l'}\} \cup \{a_{l''}\} \cup C$. Similarly, $a_h + a_l \in \{a_{l'}\} \cup \{a_{l''}\} \cup C$ (see Figure 26).

![Figure 26](image)

Since $a_ha_l \in E$, $\{a_{l'}\} \cup \{a_{l''}\} \cap \{a_{l'}\} \cup \{a_{l''}\} = \emptyset$. Thus, $a_h + a_l \in C$.

Thus, Claim 2 holds.

By Claim 1, if a_x is not an end vertex for $n \geq 7$ then Claim 2 works for any vertex in $V - \{a_x, a_k, a_y\}$ (see Figure 27,28,29).

![Figure 27](image)
If a_x is an end vertex then assume that $a_xa_{x+1} \notin E$ and $a_ka_{k-1} \notin E$ (see Figure 30).

Firstly, Claim 2 works for every vertex in $V - \{a_x, a_{x+1}, a_k, a_{k-1}, a_y\}$. Secondly, Claim 2 works for a_{x+1} and a_{k-1}. Thus, $a_k + a_l \in C$ for any $a_ka_l \in E - E_x$ for $n \geq 7$.

Thus, Lemma 2.9 holds. \Box
Lemma 2.10 P_n is exclusive for $n \geq 7$. \(\square\)

Lemma 2.11 $\zeta(P_n) \geq 2n - 7$ for $n \geq 7$. \(\square\)

Proof: Let $V = \{b_1, b_2, ..., b_n\}$. Without loss of generality, we can assume that $b_1 < b_2 < ... < b_n$. So $b_1 + b_2 < b_1 + b_3 < b_1 + b_4 < ... < b_1 + b_n < b_2 + b_3 < ... < b_{n-1} + b_n$. Let $C_0 = \{b_1 + b_2, b_1 + b_3, ..., b_1 + b_n, b_2 + b_3, ..., b_{n-1} + b_n\}$. Then there are at most four numbers which are not in S, but in C_0. On the other hand, the others in C_0 are the isolated vertices by Lemma 2.10. Thus, $\zeta(P_n) \geq 2n - 7$ for $n \geq 7$. \(\square\)

Lemma 2.12 $\sigma(P_n) \leq 2n - 7$ for $n \geq 7$.

Proof: Let $V = \{a_1, a_2, ..., a_n\}$ and $S = V \cup C$, where C is the isolated set.

Case 1: $n = 2k$ ($k \geq 4$).

$a_i = (i - 1) \times 10 + 1, i = 1, 2, 3, ..., n,$

$c_j = (j + 2) \times 10 + 2, j = 1, 2, 3, ..., n - 3, n - 1, n + 1, n + 2, ..., 2n - 5,$

$C = \{c_1, c_2, ..., c_{n-3}, c_{n-1}, c_{n+1}, c_{n+2}, ..., c_{2n-5}\}$.

Let us verify this labelling is a sum labelling in detail.

(1) The vertices in S are distinct.

(2) For all $i, j \in \{1, 2, ..., n\}$ and $i \neq j$, $a_i + a_j = [(i + j - 4) + 2] \times 10 + 2$. Since $1 \leq i, j \leq n$ and $i \neq j$, $-1 \leq i + j - 4 \leq 2n - 5$. So $a_i a_j \not\in E \iff a_i + a_j \not\in C \iff a_i + a_j \in \{12, 22, 10n + 2, (n + 2) \times 10 + 2\} \iff i + j - 4 \in \{-1, 0, n - 2, n\}$. That is, $i + j - 4 = -1 \iff i + j = 3 \iff (i, j) \in \{(1, 2), (2, 1)\} \iff a_1 a_2 \not\in E$.

Hence, for any $a_i a_j \not\in E$, $a_i + a_j \not\in S$; for any $a_i a_j \in E$, $a_i + a_j \in S$. Therefore, the labelling is a sum labelling of $P_n \cup (2n - 7)K_1$ for $n = 2k$ and $k \geq 3$.

Case 2: $n = 2k + 1$ ($k \geq 3$).

$a_i = (i - 1) \times 10 + 1, i = 1, 2, 3, ..., n,$

$c_j = (j + 2) \times 10 + 2, j = 1, 2, 3, ..., n - 3, n - 1, n + 1, n + 2, ..., 2n - 5,$

$C = \{c_1, c_2, ..., c_{n-3}, c_{n-1}, c_n, c_{n+2}, ..., c_{2n-5}\}$ (For example Figure 31).

Let us verify this labelling is a sum labelling in detail.

(1) The vertices in S are distinct.

(2) For all $i, j \in \{1, 2, ..., n\}$ and $i \neq j$, $a_i + a_j = [(i + j - 4) + 2] \times 10 + 2$. Since $1 \leq i, j \leq n$ and $i \neq j$, $-1 \leq i + j - 4 \leq 2n - 5$. So $a_i a_j \not\in E \iff a_i + a_j \not\in C \iff a_i + a_j \in \{12, 22, 10n + 2, (n + 3) \times 10 + 2\} \iff i + j - 4 \in \{-1, 0, n - 2, n + 1\}$. That is, $i + j - 4 = -1 \iff i + j = 3 \iff (i, j) \in \{(1, 2), (2, 1)\} \iff a_1 a_2 \not\in E$.

Hence, for any $a_i a_j \not\in E$, $a_i + a_j \not\in S$; for any $a_i a_j \in E$, $a_i + a_j \in S$. Therefore, the labelling is a sum labelling of $P_n \cup (2n - 7)K_1$ for $n = 2k$ and $k \geq 3$.
2, \frac{n+3}{2} + 7), ..., (5, n), (n, 2), (2, 1), (1, 3), (3, n - 1), (n - 1, 6), (6, n - 4)\}, ..., (n - 2, 4)\}. \text{So } P_n = a_{\frac{n+3}{2}+1}a_{\frac{n+3}{2}+1}a_{\frac{n+3}{2}+4}a_{\frac{n+3}{2}+7} \ldots a_8a_{n-3}a_n\text{.}

Hence, for any \(a_i a_j \not\in E\), \(a_i + a_j \not\in S\); for any \(a_i a_j \in E\), \(a_i + a_j \in S\). Therefore, the labelling is a sum labelling of \(P_n \cup (2n - 7)K_1\) for \(n = 2k + 1\) and \(k \geq 3\).

\[\begin{align*}
0 &= \zeta(P_n) < \sigma(P_n) = 1; \\
1 &= \zeta(P_5) < \sigma(P_5) = 2; \\
3 &= \zeta(P_6) < \sigma(P_6) = 4; \\
\zeta(P_n) &= \sigma(P_n) = 0, \quad n = 1, 2, 3; \\
\zeta(P_n) &= \sigma(P_n) = 2n - 7, \quad n \geq 7.
\end{align*}\]

Corollary 2.1

\[\begin{align*}
0 &= \zeta(F_n) < \sigma(F_n) = 1; \\
2 &= \zeta(F_5) < \sigma(F_5) = 3; \\
\zeta(F_n) &= \sigma(F_n) = 0, \quad n = 3, 4; \\
\zeta(F_n) &= \sigma(F_n) = 2n - 8, \quad n \geq 7.
\end{align*}\]

Acknowledgements

The authors are very grateful to the referee and Professor Liang Sun for their helpful comments and suggestions.
References

